МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ БЕЛАРУСЬ ГПО «БЕЛЭНЕРГО»

ПРОЕКТНОЕ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ РЕСПУБЛИКАНСКОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «БЕЛНИПИЭНЕРГОПРОМ» (РУП «БЕЛНИПИЭНЕРГОПРОМ»)

РЕКОНСТРУКЦИЯ МИНСКОЙ ТЭЦ-3 С ЗАМЕНОЙ ВЫБЫВАЮЩИХ МОЩНОСТЕЙ ОЧЕРЕДИ 14 МПА 1-АЯ ОЧЕРЕДЬ. ВНЕСЕНИЕ ИЗМЕНЕНИЙ

АРХИТЕКТУРНЫЙ ПРОЕКТ

1240-ПЗ-АП12

Книга 1

ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ (ОВОС)

Часть 1 Отчет

МИНИСТЕРСТВО ЭНЕРГЕТИКИ РЕСПУБЛИКИ БЕЛАРУСЬ ГПО «БЕЛЭНЕРГО»

ПРОЕКТНОЕ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ РЕСПУБЛИКАНСКОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «БЕЛНИПИЭНЕРГОПРОМ» (РУП «БЕЛНИПИЭНЕРГОПРОМ»)

РЕКОНСТРУКЦИЯ МИНСКОЙ ТЭЦ-3 С ЗАМЕНОЙ ВЫБЫВАЮЩИХ МОЩНОСТЕЙ ОЧЕРЕДИ 14 МПА 1-АЯ ОЧЕРЕДЬ. ВНЕСЕНИЕ ИЗМЕНЕНИЙ

АРХИТЕКТУРНЫЙ ПРОЕКТ

1240-ПЗ-АП12

Книга 1

ОЦЕНКА ВОЗДЕЙСТВИЯ НА ОКРУЖАЮЩУЮ СРЕДУ (ОВОС)

Часть 1 Отчет

Главный инженер

Главный инженер проекта

С.В.Перцев

П.С.Шиманович

SAM WHR No

дпись и дата

попоп В

Обозначение	Наименование	Примеч: ние
240-П3-АП12	Часть 1	
	Введение	7
	1 Общая характеристика планируемой	
	деятельности (объекта)	10
	1.1 Общая характеристика объекта	10
	1.1.1 Сведения о существующем состоянии	10
<u>.</u>	1.1.2 Краткая характеристика площадки	<u></u>
	расположения объекта	11
	1.2 Перспектива. Основные технологические	
	решения	13
	2 Оценка существующего состояния	
	окружающей среды	16
	2.1 Природные компоненты и объекты	16
	2.1.1 Климат и метеорологические условия	16
	2.1.2 Атмосферный воздух	18
	2.1.3 Поверхностные воды	22
	2.1.4 Геологическая среда и подземные воды	25
	2.1.5 Рельеф, земельные ресурсы и	
<u> </u>	почвенный покров	27
	2.1.6 Растительный и животный мир. Леса	29
	2.1.7 Природные комплексы и природные	
	объекты	30
	2.2 Социально-экономические условия	30
	3 Воздействие объекта на окружающую среду	35

	Изм.	Кол.уч:	Лист	№док	Подп,	Дата
•	Разраб	5	Нехайч	INK	W	12.20
ĺ	Paspa6	5.	Дорово	ская	826~	12.20
	Пров.		Котель	никова	(here)	12.20
	Утв.		Котельников		dea	12.20
	Н.конт	р.	Новаш		100	12.20

1240-ПЗ-АП12

Содержание

Стадия	Лист	Листов
Α	2	299

Обозначение	Наименование	Приме ние	
1240-П3-АП12	3.1 Источники и виды возможного		
	воздействия планируемой деятельности	35	
	3.2 Воздействие на атмосферный воздух.		
	Прогноз и оценка изменения состояния		
	атмосферного воздуха	35	
	3.2.1 Источники выбросов загрязняющих		
	веществ в атмосферу	36	
	3.2.2 Обоснование расчета выбросов		
	загрязняющих веществ	37	
	3.2.3 Мероприятия по уменьшению выбросов		
	загрязняющих веществ в атмосферу	50	
	3.2.4 Приземные концентрации	51	
	3.3 Воздействие физических факторов.		
	Прогноз и оценка уровня физического		
	воздействия	57	
	3.3.1 Воздействие шума	57	
	3.3.2 Электромагнитное излучение	65	
	3.3.3 Вибрация	66	
	3.4 Воздействие на поверхностные и		
	подземные воды. Прогноз и оценка		
	изменения состояния поверхностных и		
	подземных вод	66	
	3.4.1 Существующее положение	66	
	3.4.2 Проектные решения	73	
	3.4.3 Водный баланс	81	
	3.4.4 Мероприятия по рациональному		
	использованию воды	81	
	3.5 Воздействие на окружающую среду		
	i e		

3.6 Воздействие на геологическую среду, земельные ресурсы и почвенный покров. Прогноз и оценка изменения геологических условий, состояния земельных ресурсов и почвенного покрова. 3.7 Воздействие на растительный и животный мир. Прогноз и оценка изменения состояния объектов растительного и животного мира. 3.7.1 Воздействие на растительность в за	Приме ние
Прогноз и оценка изменения геологических условий, состояния земельных ресурсов и почвенного покрова 85 3.7 Воздействие на растительный и животный мир. Прогноз и оценка изменения состояния объектов растительного и животного мира 87 3.7.1 Воздействие на растительность 87 3.7.2 Воздействие на растительность 90 3.8 Воздействия на животный мир 90 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 90 3.9 Комплексная оценка воздействия на окружающую среду 91 4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, минимизации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
условий, состояния земельных ресурсов и почвенного покрова 3.7 Воздействие на растительный и животный мир. Прогноз и оценка изменения состояния объектов растительного и животного мира 3.7.1 Воздействие на растительность 3.7.2 Воздействия на животный мир 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
и почвенного покрова 3.7 Воздействие на растительный и животный мир. Прогноз и оценка изменения состояния объектов растительного и животного мира 3.7.1 Воздействие на растительность 87 3.7.2 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, минимизации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
3.7 Воздействие на растительный и животный мир. Прогноз и оценка изменения состояния объектов растительного и животного мира 3.7.1 Воздействие на растительность 3.7.2 Воздействия на животный мир 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 90 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 6 Мероприятия по предотвращению, минимизации и (или) компенсации воздействия 7 Выводы по результатам проведения оценки воздействия 10	
мир. Прогноз и оценка изменения состояния объектов растительного и животного мира 3.7.1 Воздействие на растительность 3.7.2 Воздействия на животный мир 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	35
состояния объектов растительного и животного мира 3.7.1 Воздействие на растительность 3.7.2 Воздействия на животный мир 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
животного мира 3.7.1 Воздействие на растительность 3.7.2 Воздействия на животный мир 90 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 90 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
3.7.1 Воздействие на растительность 3.7.2 Воздействия на животный мир 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
3.7.2 Воздействия на животный мир 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	 37
3.7.2 Воздействия на животный мир 3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	 37
подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране 90 3.9 Комплексная оценка воздействия на окружающую среду 91 4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, минимизации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	—— 90
охране. Прогноз и оценка изменения состояния природных объектов, подлежа- щих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
состояния природных объектов, подлежащих особой или специальной охране 3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия	
3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10	
3.9 Комплексная оценка воздействия на окружающую среду 4 Прогноз и оценка изменения социальноэкономических условий 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10	90
4 Прогноз и оценка изменения социальноэкономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10	
-экономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, минимизации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10	91
-экономических условий 95 5 Прогноз и оценка последствий возможных проектных и запроектных аварийных ситуаций 97 6 Мероприятия по предотвращению, минимизации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10	-
проектных и запроектных аварийных ситуаций 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 7 Выводы по результатам проведения оценки воздействия 10	 95
проектных и запроектных аварийных ситуаций 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 7 Выводы по результатам проведения оценки воздействия 10	
ситуаций 97 6 Мероприятия по предотвращению, миними- зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10	
зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10)7
зации и (или) компенсации воздействия 99 7 Выводы по результатам проведения оценки воздействия 10	
7 Выводы по результатам проведения оценки воздействия 10	19
оценки воздействия 101	
	01
1240-П3-АП12	

Взам. инв. Nº

Подпись и дата

Инв. № подл.

Обозначение	Наименование	Примеч ние
Приложение А	Ситуационный план размещения	
	Минской ТЭЦ-3	110
Приложение Б	Ситуационная карта-схема размещения	
	Минской ТЭЦ-3 с зоной воздействия и	
	расположением объектов ООПТ	111
Приложение В	Карта-схема расположения источников	
	выбросов на производственной площадке	
	Минской ТЭЦ-3	112
Приложение Г	Расчет выбросов загрязняющих веществ от	
	топливосжигающего оборудования по проекту	113
Приложение Д	Расчет выбросов загрязняющих веществ от	1
	проектируемого комплекса сооружений по	-
	пожарному депо	126
Приложение Е	Таблица параметров источников выбросов	-
	по проекту	141
Приложение Ж	Результаты расчетов рассеивания по проекту	146
	- вариант 1	146
	- вариант 2	161
	- вариант 3	186
Приложение И	Результаты расчетов рассеивания по	100
	вертикали с учетом высоты жилых зданий	209
	- вариант 1	209
	- вариант 2	217
	- вариант 3	229
Приложение К	Результаты расчетов рассеивания выбросов	448
	от проектируемых источников вспомогатель-	
	ных производств (пожарное депо)	241
—————————————————————————————————————	Схема ситуационного плана с нанесением	241
		250
	уюточников шума	250
		<u>.</u>
	1240-П3-АП12	F

Инв. № подл.

Обозначение	Наименование	Примеча- ние
Приложение М	М.1 Результаты расчетов шумового воздейст-	
	вия от источников шума Минской ТЭЦ-3	251
	М.2 Расчет шума, проникающего из помещения	
		260
Приложение Н	Письмо Минприроды РБ № 11-16/1799 от	
	12.04.2018 «О проектировании котельных	
	установок для работы на мазуте»	
	Письмо Минприроды РБ № 11-16/3901 от	
	24.08.2018 «Об установлении норм выбросов	
	для котельных установок»	268
Приложение О	Расчет рассеивания в ООПТ	275
	- вариант 1	275
	- вариант 2	283
	- вариант 3	292
1240-АП12-СП	Состав проектной документации	

Взам. инв. №								
Подпись и дата								
Инв. № подл.	Изм.	Кол.уч	Лист	№док	Подп.	Дата	1240-ПЗ-АП12	Лист

В 2018 году РУП «Белнипиэнергопром» разработал архитектурный проект «Реконструкция Минской ТЭЦ-3 с заменой выбывающих мощностей очереди 14 МПа. 1-ая очередь» и по проекту получено положительное заключение государственной экологической экспертизы (заключение № 4705/2018 от 11.12.2018 г.).

Внесением изменений в вышеупомянутый архитектурный проект предусматривается:

- выделение пусковых комплексов строительства;
- дополнительный отвод земельных участков (в постоянное пользование 0,0344 га земель населенных пунктов) под строительство дополнительных опор с фундаментами под трубопроводы сетевой воды за оградой ТЭЦ;
- дополнительная вырубка объектов растительного мира на площадках строительства.

Основные технологические решения, связанные с воздействием на компоненты природной среды (атмосферный воздух, подземные и поверхностные воды), не изменятся относительно решений согласованного в 2018 году архитектурного проекта.

Согласно п. 5 статьи 19 Закона Республики Беларусь от 18 июля 2016 № 399-3 «О государственной экологической экспертизе, стратегической экологической оценке и оценке воздействия на окружающую среду» (в редакции Закона РБ от 15 июля 2019 № 218-3) по проектным решениям проводится оценка воздействия на окружающую среду (ОВОС), поскольку по данному объекту требуется дополнительный отвод земельных участков.

Раздел ОВОС разработан в целом для объекта в соответствии с требованиями:

- «Положения о порядке проведения оценки воздействия на окружающую среду, требованиях к составу отчета об оценке воздействия на окружающую среду, требованиях к специалистам, осуществляющим проведение оценки воздействия на окружающую среду» (утверждено Постановлением Совета Министров Республики Беларусь № 47 от 19.01.2017);
- ТКП 17.02-08-2012 (02120) «Охрана окружающей среды и природопользование. Правила проведения оценки воздействия на окружающую среду (ОВОС) и подготовки отчета».

Заказчиком проектной документации является РУП «Белэнергострой - управляющая компания холдинга», исполнителем ОВОС – РУП «Белнипиэнергопром».

Предприятия энергетики оказывают разнообразные воздействия на окружающую среду (атмосферный воздух, почвы, леса и др. реципиенты). Эти воздействия неизбежны даже при максимально возможном объеме применения природоохранных мероприятий. При этом воздействия не равнозначны по интенсивности и важности для нормального функционирования природной среды. Их непосредственное влияние на окружающую среду зависит от сложившейся экологической ситуации.

Цель настоящей работы - выявить возможные нежелательные воздействия на окружающую природную среду и социально-экономические условия, оценить

Подпись и дата	
Инв. № подл.	

Взам, инв. №

значимость воздействий и обосновать экологическую допустимость реконструкции Минской ТЭЦ-3.

При проведении ОВОС решались следующие задачи:

- оценка существующего состояния природной среды в границах потенциальной зоны возможного воздействия рассматриваемого объекта;
- определение уровня воздействия объекта на окружающую природную среду по каждому фактору воздействия;
 - оценка изменений природной среды в результате планируемой деятельности;
 - оценка последствий воздействия объекта на окружающую природную среду;
 - предложение мероприятий по предотвращению или снижению возможных неблагоприятных воздействий на окружающую среду.

При разработке раздела OBOC использовались следующие экологические ограничения, регламентируемые законодательными и нормативно-методическими документами, в т.ч.:

- ПДК (предельно-допустимые концентрации) загрязняющих веществ в атмосферном воздухе;
 - допустимый объем водозабора из поверхностных источников;
 - ПДК химических и иных веществ в воде рыбохозяйственных водных объектов;
 - показатели качества воды рыбохозяйственных водных объектов;
- наличие редких и исчезающих видов, занесенных в Красную книгу Республики Беларусь;
 - допустимые нормы загрязнения воздуха для растений;
- режим особо охраняемых природных территорий, объектов и территорий, подлежащих специальной охране;
- нормативы экологически безопасных концентраций загрязняющих веществ в атмосферном воздухе особо охраняемых природных территорий, отдельных природных комплексов и объектов особо охраняемых природных территорий, природных территорий, подлежащих специальной охране;
 - нормы допустимых уровней шума;
 - допустимые уровни электромагнитных полей.

Для определения значимости воздействия оценивались следующие параметры, качественные и количественные показатели которых переводились в баллы:

- пространственный масштаб;
- временной масштаб;
- интенсивность (значимость изменений в окружающей среде в результате воздействия).

При выполнении оценки значимости воздействия приняты три категории значимости воздействия, которые характеризуются общим количеством баллов, полученным в результате умножения баллов по каждому из трех выше перечисленных параметров:

- воздействие низкой значимости (общее количество баллов 1-8);
- воздействие средней значимости (общее количество баллов 9-27);
- воздействие высокой значимости (общее количество баллов 28-64).

Реализация проектных решений по реконструкции Минской ТЭЦ-3 не будет

Инв. № подл. Подпись и дата Взам. инв. №

сопровождаться значительным вредным трансграничным воздействием на окружающую среду. Поэтому, процедура проведения ОВОС данного объекта не предусматривает выполнение этапов, касающихся трансграничного воздействия.

Перечень материалов, используемых в работе, приведен в «Списке использованных источников».

Мам. Кол.уч. Лист №док Подп. Дата

1240-П3-АП12

1 ОБЩАЯ ХАРАКТЕРИСТИКА ПЛАНИРУЕМОЙ ДЕЯТЕЛЬНОСТИ (ОБЪЕКТА)

1.1 Общая характеристика объекта

1.1.1 Сведения о существующем состоянии

Минская ТЭЦ-3 входит в состав Республиканского унитарного предприятия «Минскэнерго». ТЭЦ-3 является основным источником электро- и теплоснабжения предприятий юго-восточного промышленного района и жилищно-коммунальных потребителей северо-восточного, юго-восточного и частично центрального и южного секторов города, обеспечивающим около 25 % энергетических потребителей г. Минска. ТЭЦ-3 является одним из трех крупных источников тепла города, самым крупным источником в юго-восточном районе и единственным источником технологического пароснабжения таких предприятий как автозавод, тракторный завод и других крупных предприятий.

В настоящее время на Минской ТЭЦ-3 установлено следующее основное оборудование:

- а) в главном корпусе в пределах очереди 14 МПа;
 - один паровой котел ТП-80 ст. № 6 производительностью 420 т/ч;
 - три паровых котла ТП-87 ст. № 7–9 производительностью по 420 т/ч;
- две паровые турбины ПТ-60-130/13 ст. № 5, 6 электрической мощностью по 60 МВт:
- две паровые турбины Т-100-130 ст. № 7 (выведена из эксплуатации), 8 электрической мощностью по 100 МВт;
 - б) в главном корпусе в пределах очереди 10 МПа:
 - парогазовая установка ПГУ-230 мощностью 230 МВт в составе:
- 1) газотурбинной установки (ГТУ) GT13E2 (фирмы «ALSTOM») $N_{\text{ном}} = 169 \text{ MBt};$
- 2) паровой турбины T-53/67-8,0 (ЗАО «Уральский турбинный завод») N_{ном} = 60 MBт;
- 3) парового котла-утилизатора SES-212,5/57,2-7,98/0,7-490/208 производства фирмы «SES Energy» (Словакия) производительностью 212,5/57,2 т/ч;
 - в) в водогрейной котельной № 1:
- четыре водогрейных котла ПТВМ-100 ст. № 1 4 производительностью 100 Гкал/ч каждый;
 - г) в водогрейной котельной № 2:
- три водогрейных котла КВГМ-180 ст. № 5 7 производительностью 180 Гкал/ч каждый.

В качестве основного топлива для существующих котлов используется природный газ, резервного — мазут; для блока ПГУ-230 основное топливо — природный газ, резервное и аварийное топливо не предусматривается.

Установленная электрическая мощность ТЭЦ составляет 550 МВт, тепловая – 1693 Гкал/ч.

Инв. № подл. Подпись и дата

NHB. NG

Взам.

Кол.уч. Лист №док Подп. Дата

1240-П3-АП12

1.1.2 Краткая характеристика площадки расположения объекта

Минская ТЭЦ-3 расположена по ул. Омельянюка в юго-восточной части г. Минска в центре промышленной зоны Заводского района, между автомобильным и тракторным заводами.

Площадка ТЭЦ-3 расположена на возвышенности, вытянута с северо-запада на юго-восток на 0,9 км при максимальной ширине до 0,7 км, плотно застроена и насыщена всеми видами инженерных коммуникаций, железными и автомобильными дорогами, обнесена железобетонной оградой. С территории организовано три автомобильных выезда на прилегающие городские улицы. Основной въезд на площадку осуществляется с ул. Омельянюка.

Подъездной железнодорожный путь на площадку ТЭЦ-3, протяженностью 1,2 км, примыкает к железнодорожной станции промзоны «Промышленная».

Общая площадь Минской ТЭЦ-3 в границах существующего отвода составляет 46,14 га.

На прилегающих к площадке ТЭЦ-3 территориях расположены:

- с севера и северо-востока лесной массив;
- с запада гаражи;
- с северо-запада и запада ОАО «Минский подшипниковый завод»;
- с юга коридор выходов ЛЭП-110 кВ отделяет ТЭЦ-3 от жилой застройки. На расстоянии 180 м от территории станции по улице Омельянюка находится ближайший двухэтажный жилой дом;
- с северо-востока жилая застройка. Ближайшее расстояние от территории станции до границ земельных участков (при усадебном типе застройки) 160 м;
- с юго-запада ряд мелких предприятий: строительное управление СУ-67 и Управление механизации СУ-94 ОАО «Стройтреста №1», Управление малой механизации УММ, ОАО «Белтеплоизоляция», фабрика «Игромет» ОАО «Актамир»;
- с юго-востока и востока оптово-розничный плодоовощной комбинат Советского района и оптово-плодоовощной комбинат Заводского района, автостоянка и станция технического обслуживания).

Ближайшая жилая застройка расположена в северо-восточном направлении на расстоянии 160 м, в южном — на расстоянии 180 м от границы территории Минской ТЭЦ-3.

Ситуационный план расположения Минской ТЭЦ-3 с нанесением расчетной СЗЗ приведен в приложении А.

Расчетный размер санитарно-защитной зоны Минской ТЭЦ-3 установлен и согласован с ГУ «Минский городской центр гигиены и эпидемиологии». Расстояние от территории станции до границ расчетной санитарно-защитной зоны составляет по направлениям:

- с севера 160 м;
- c северо-востока 200 м:
- c востока 70 м;
- c юго-востока 140 м;
- c юга 120 м;
- c юго-запада 100 м;
- с запада –140 м;
- с северо-запада –140 м.

. № подл. Подпись и дата Взам	
Инв. № п	

_					
Изм.	Кол.уч.	Лист	№док	Подп.	Дата

Максимальный радиус зоны воздействия Минской ТЭЦ-3 после реализации проекта составляет около 9,2 км и обусловлен загрязнением группы суммации ∑SO₂+NO₂. Зона воздействия определена из условия не превышения по любому из веществ и групп суммации приземной концентрации 0,2 ПДК.

В зоне воздействия Минской ТЭЦ-3 расположены объекты особо охраняемых природных территорий (ООПТ) – биологические заказники республиканского значения:

- «Стиклево» (расчетная точка № 21);
- «Глебковка» (расчетная точка № 22).

Ситуационная карта-схема расположения Минской ТЭЦ-3 с зоной воздействия и объектами особо охраняемых природных территорий представлена в приложении Б.

Климат района расположения ТЭЦ-3 умеренно-континентальный. Преобладают ветры западного направления.

Поскольку колебания абсолютных отметок рельефа местности в радиусе 50 высот дымовых труб незначительные и составляет не более 50 м на 1 км, поправочный коэффициент на рельеф в расчете приземных концентраций не вводится.

Метеорологические и климатические характеристики, определяющие условия рассеивания вредных веществ в атмосферном воздухе, приведены в таблице 1.1.

Таблица 1.1 - Метеорологические и климатические характеристики

аомица 1.1 - иетеорологические и климатические характеристики						
Наименование характеристики	Размерность	В	еличина			
Средняя температура наружного воздуха	°C	·	- 4,4			
наиболее холодного месяца						
Средняя максимальная температура наруж-	°C		20,6			
ного воздуха наиболее жаркого месяца						
Коэффициент, зависящий от температур-	<u>мг⋅с²/3</u> -град ^{1/3}	•	160			
ной стратификации атмосферы, А	Г					
Коэффициент рельефа местности	б/р		1			
Ветровой режим:						
Повторяемость направлений ветра	%	январь	июль	год		
C		6	14	9		
CB		4	9	8		
В		9	9	11		
ЮВ		12	6	11		
Ю		20 17	10 12	16 13		
Ю3 3		20	20	18		
c3		12	20	14		
Штиль	,	3	7	5		
Скорость ветра, повторяемость превышения			, ,	•		
которой составляет 5 %	м/с		5			

Значения фоновых концентраций загрязняющих веществ в атмосферном воздухе в районах постов наблюдений г. Минска и расчетные метеохарактеристики представлены ГУ «Республиканский центр радиационного контроля и мониторинга окружающей среды».

Изм.	Кол,уч.	Лист	№док	Подп.	Дата

NHB. No

Взам.

Подпись и дата

Ne nogn

1.2 Перспектива. Основные технологические решения

В соответствии с дополнением № 1 к заданию на проектирование в 1-ой очереди строительства предусматривается выделение 4-х пусковых комплексов строительства (1 ПК, 2 ПК, 3 ПК, 4 ПК).

1 пусковой комплекс (1 ПК)

- В 1-м пусковом комплексе предусматривается строительство комплекса зданий и сооружений пожарного депо в составе:
- здание пожарного депо с гаражом-стоянкой на 6 автомобилей (3 въезда и 3 выезда), постом ТО, мастерской поста ТО, компрессорной, диспетчерской, помещениями мойки и сушки рукавов, сушки боевой одежды, склада вещимущества, классом оперативно-тактического мастерства, комнат отдыха дежурного караула, комнат разогрева и приема пищи, кабинетов руководства пожарной части, спортивного зала и зала собраний;
 - закрытого гаража-стоянки для автомобилей с постом мойки;
 - учебно-тренировочный комплекс.

2 пусковой комплекс (2 ПК)

Во 2 пусковом комплексе предусматривается:

- установка в турбинном отделении главного корпуса нового парового турбоагрегата Тп-115/130-12,8 в комплекте с генератором и вспомогательным оборудованием на месте демонтируемого парового турбоагрегата Т-100-130 ст. № 7;
 - замена деаэрационной установки ст. № 14;
- замена деаэраторов подпиточных ст. № 7, 8 с насосами и обвязкой трубопроводами, сетевых трубопроводов в объеме ячейки заменяемого оборудования;
- устройство заглубленного монолитного железобетонного бака аварийного слива турбинного масла;
- создание новой оборотной системы охлаждения СОО-2* для вновь устанавливаемого турбоагрегата ст. № 7;
- модернизация градирен № 1 и № 2 оборотной системы СОО-1 в части установки водоуловителя;
- открытая установка (со стороны оси А главного корпуса) трансформаторов ТДЦ-160000/110У1 и ТРДНС-25000/35У1 взамен существующих трансформаторов ТДЦГ-125000/110 (С7Т) и ТДН-15000/35 (Р8Т).

3 пусковой комплекс (3 ПК)

- В 3 пусковом комплексе предусматривается:
- установка нового парового котла типа E-500-13,8-560ГМ ст. №10 паропроизводительностью 500 т/ч в комплекте с тягодутьевыми механизмами и вспомогательным оборудованием с расширением котельного отделения в новых габаритах и конструкциях и выводом из эксплуатации существующего парового котла ТП-87 ст. № 8;
- для отвода дымовых газов от котла ст. № 10 к дымовой трубе № 3 предусматривается строительства нового металлического участка газохода;

Изм. Кол.уч. Лист №док Подп. Дата

1240-П3-АП12

- в части XBO замена морально и физически устаревших существующих двух осветлителей производительностью по 1000 м³/ч на аналогичные по своим параметрам и характеристикам;
- модульная компрессорная установка для снабжения сжатым технологическим и инструментальным (подготовленным) воздухом проектируемого котла № 10, для продувки газопроводов.

4 пусковой комплекс (4 ПК)

В 4 пусковом комплексе предусматривается:

- замена крана мостового электрического грузоподъемностью 100/20 т в турбинном отделении главного корпуса.

Оборотная система охлаждения СОО-2* вновь устанавливаемого турбоагрегата ст. № 7.

В части реконструкции сооружений существующей системы охлаждения СОО-2 во 2 пусковом комплексе строительства предусматривается следующее:

- строительство циркуляционной насосной станции № 3 (ЦНС № 3) на месте демонтируемой градирни ст. № 5, с установкой четырех циркуляционных насосов (четыре рабочих);
- строительство одной четырехсекционной вентиляторной градирни № 5 (на месте демонтируемой градирни ст. № 5);
- прокладка новых магистральных циркводоводов от насосной и градирни до района установки нового турбоагрегата ст. № 7 в главном корпусе. Подключение турбоагрегата № 7 к новым водоводам;
- прокладка трубопроводов добавочной воды (речной) воды в аванкамеру циркнасосной № 3;
- устройство трубопровода связи между напорными водоводами существующей СОО-2 турбоагрегатов ст. № 5, 6, 8 и вновь проектируемой системой охлаждения турбоагрегата ст. № 7.

Работа системы предусматривается по следующей схеме:

- охлажденная на градирне вода циркуляционными насосами по напорным подающим водоводам подается на охлаждение оборудования турбоагрегата ст. № 7 в главный корпус очереди 14 МПа;
- нагретая вода после охлаждения оборудования турбоагрегата ст. № 7 под остаточным напором по сливным водоводам подается на охлаждение на градирню.

Замасленные стоки из системы подаются на очистные сооружения и, после их очистки, возвращаются в СОО-2 (система оборотного охлаждения).

Модульная компрессорная установка (3 пусковой комплекс)

Для снабжения сжатым технологическим и инструментальным (подготовленным) воздухом проектируемого котла № 10, для продувки газопроводов предусматривается установка модульной компрессорной станции контейнерного исполнения. Модульная компрессорная станция (контейнерного исполнения) поставляется заводомизготовителем на площадку строительства в полностью собранном виде, готовой к работе, с технологическим оборудованием внутри контейнера, отрегулированного на заданные выходные параметры по сжатому воздуху. Модульная компрессорная стан-

Инв. № подл. Подпись и дата Взам. инв. №

№док

Подп.

Кол.уч. Лист

1240-ПЗ-АП12

ция работает в автоматизированном режиме и постоянного обслуживающего персонала не предусматривает.

Все предусмотренные проектные решения по реконструкции Минской ТЭЦ-3 выполняются в границах существующей промплощадки ТЭЦ, за исключением строительства дополнительных опор с фундаментами под теплосети. Под строительство дополнительных опор требуется дополнительный отвод земли в количестве 0,034 га (земли населенных пунктов).

ОВОС проводится для объекта в целом без выделения пусковых комплексов.

덜		
Подпись и дата		
й Дата Изм. Кол.уч. Лист №док Подп. Дата	10-ПЗ-АП12	7ист 15

2 ОЦЕНКА СУЩЕСТВУЮЩЕГО СОСТОЯНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

2.1 Природные компоненты и объекты

2.1.1 Климат и метеорологические условия

Согласно СНБ 2.04.02-2000 город Минск расположен в пределах климатического подрайона II В.

Климат умеренно континентальный. На формирование природных условий города в значительной степени влияют потоки влажного атлантического воздуха и наличие циклонов.

К основным климатическим и метеорологическим явлениям, влияющим на способность атмосферы рассеивать продукты выбросов загрязняющих веществ и формировать уровень ее загрязнения, относятся: режим ветра, штили, приподнятые инверсии, стратификация, температура воздуха, осадки (по их типам), туманы.

Bemep

Ветровой режим является главным фактором, определяющим рассеивание примесей. С ветром связан горизонтальный перенос загрязняющих веществ, удаление их от источника выбросов. Неблагоприятные для рассеивания примесей и самоочищения атмосферы условия формируются при слабых ветрах со скоростью до 2 м/с и штилях. В период штилей значительно увеличивается подъем перегретых выбросов в слои атмосферы, где они рассеиваются. Однако, если при этих условиях наблюдаются инверсии, то может образоваться «потолок», который будет препятствовать подъему выбросов, и концентрация примесей у земли будут резко возрастать.

В таблице 2.1 приводятся данные о повторяемости направлений ветра, средней скорости ветра по направлениям и повторяемости штилей. Как видно из таблицы в течение года преобладают ветры западного направления. Средние скорости ветра невелики, несколько больше зимой - 3 м/с, и меньше летом - 2,2 м/с. В разрезе отдельных сезонов наибольшие из средних сезонных скоростей имеют ветры юго-западных и северо-западных румбов зимой. Скорость ветра (U*), повторяемость превышения которой составляет 5 %, на рассматриваемой территории - 6 м/с.

Таблица 2.1 – Повторяемость направлений ветра, средняя скорость

	H OII	<u>апр</u> авл	пениям	, повто	ряемос	сть шти	1леи			
Область,	Месяц	Повторяемость направлений ветра (числитель), %, средняя с ветра по направлениям (знаменатель) м/с, повторяемость шти						корость		
пункт		С	СВ	В	ЮВ	Ю	ЮЗ	3	C3	штиль
	1	<u>6</u> 2,9	<u>4</u> 2,3	<u>9</u> 2,7	<u>12</u> 2,8	<u>20</u> 3,1	<u>17</u> 3,1	<u>20</u> 3,0	<u>12</u> 3,1	3
Минск	VII	<u>14</u> 2,5	<u>9</u> 2,4	. <u>9</u> 2,2	<u>6</u> 2,3	10 2,4	<u>12</u> 2,5	<u>20</u> 2,2	<u>20</u> 2,2	7
	Год	<u>9</u> 2,6	<u>8</u> 2,5	<u>11</u> 2,6	<u>11</u> 2,7	<u>16</u> 2,8	13 2,7	<u>18</u> 2,6	<u>14</u> 2,6	5

Анализ повторяемости направлений ветра свидетельствует о довольно благоприятном по отношению к городу территориальном расположении промплощадки ТЭЦ-3, так как наибольшую повторяемость имеют ветры, препятствующие распространению выбросов ТЭЦ на город.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

№ подл.

Средняя месячная температура воздуха является одной из основных климатических характеристик, отражающих особенности термического режима района. Годовой ход ее зависит от радиационных условий и сезонных изменений циркуляции атмосферы и характеризуется небольшими колебаниями от месяца к месяцу зимой и летом и резкими — в переходные сезоны (весной и осенью).

Годовой ход средних месячных температур воздуха на рассматриваемой территории приведен в таблице 2.2 и характеризуется наибольшими значениями в июле и наименьшими в январе.

Таблица 2.2 – Средняя месячная и годовая температура воздуха, (г. Минск)

	11		IV	٧	VI	VII	VIII	1X	Х	ΧI	XII	Год
-5,9	-4,8	-0,5	6,6	13,1	16,3	17,8	17,0	11,7	6,2	0,5	-3,8	6,2

Средняя максимальная температура наружного воздуха наиболее жаркого месяца года составляет + 20,6 °C, средняя температура наружного воздуха наиболее холодного месяца - минус 4,4 °C.

Осадки

По количеству выпавших осадков рассматриваемый район относится к зоне достаточного увлажнения. Здесь наблюдаются все виды осадков: жидкие, твердые и смешанные. В течение года осадки выпадают неравномерно. Самый дождливый месяц июнь, когда выпадает 82 мм осадков, немного меньше осадков в июле и августе. Самые сухие месяцы — февраль и март (34 мм осадков). В течение года в среднем выпадает 683 мм осадков. Максимальное суточное количество осадков может достигать 74 мм.

Осадки, выпадающие в твердом виде, образуют снежный покров, который образуется в основном в третьей декаде декабря и разрушается в первой декаде марта. Средняя высота снежного покрова — 27 см. Наблюдаются зимы, когда устойчивый снежный покров не образуется.

На основании выше приведенного можно отметить, что климатические и метеорологические характеристики рассматриваемого района способствуют рассеиванию загрязняющих веществ в атмосферном воздухе. Учитывая низкую повторяемость штилевых ситуаций (средняя годовая повторяемость штилей составляет 5 %), инверсии не будут оказывать ощутимого воздействия на состояние атмосферного воздуха рассматриваемой территории.

Ввиду того, что район находится на территории с достаточным увлажнением, отмечается хорошая способность атмосферы к самоочищению за счет вымывания загрязнителей осадками.

Метеорологические и климатические характеристики, определяющие условия рассеивания вредных веществ в атмосферном воздухе и используемые в дальнейшем в расчетах приземных концентраций, предоставлены ГУ «Республиканский центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды (БЕЛГИДРОМЕТ)» и приведены в таблице 2.3.

<u> Таблица 2.3 - Метеорологические и климатические характеристики</u>

- 1	1		
	· · · · · · · · · · · · · · · · · · ·	Размерность	Величина
	Средняя температура наружного воздуха наиболее холодного месяца	°C	-4,4

					_
	- -			——	-
Изм.	Кол.уч	Лист	№док	Подп.	Дата
Ь		717101	т-дох	подп.	дата

Взам. инв.

№ подл

Наименование характеристики	Размерность	В	еличина	
Средняя температура наружного воздуха	°C		+20,6	
наиболее жаркого месяца				
Коэффициент, зависящий от температур-	<u>мг·с^{2/3} ·град^{1/3}</u>		160	
ной стратификации атмосферы, А	Г			
Коэффициент рельефа местности	б/р		1	
Ветровой режим:				
Повторяемость направлений ветра	%	январь	июль	год
C		6	13	9
CB		8	10	10
B		8	7	9
ЮВ		13	6	12
Ю Ю3		16	10	13
3	,	20	15	16
C3		18	19	17
Штиль		11 6	20	14 7
Скорость ветра, повторяемость превышения		0	9	1
которой составляет 5 %	м/с		7	

2.1.2 Атмосферный воздух

Оценку состояния атмосферного воздуха проводят по результатам измерения концентраций загрязняющих веществ, а также объемов выбросов от стационарных и мобильных источников.

По данным Национальной системы мониторинга окружающей среды в Республике Беларусь объем валовых выбросов загрязняющих веществ в атмосферу г. Минска в 2019 году составил 148,7 тыс. тонн, при этом на долю мобильных источников приходится 87,5 % от общего количества выбросов. По результатам анализа данных о выбросах загрязняющих веществ в атмосферный воздух г. Минска за 2014 – 2019 года установлена тенденция их снижения (таблица 2.4). За рассматриваемый период суммарное снижение выбросов по г. Минск составило 17,9 %, при этом от стационарных источников на 20,8 %, от мобильных источников - на 17,5 %.

Таблица 2.4 – Выбросы загрязняющих веществ в атмосферный воздух г. Минска за 2014 – 2019 года

		ототода				
Показатель	2015	2015	2016	2017	2018	2019
Стационарные источники	23,5	20,3	18,1	18.3	18.3	18,6
Мобильные источники	157,7	126,1	121,9	136,8	135.6	130,1
Суммарно	181,2	146,4	140,0	155,1	153,9	148.7

На рисунке 2.1 представлены выбросы основных загрязняющих веществ в атмосферный воздух от стационарных источников в разрезе областей и г. Минск в 2019 году. В составе валовых выбросов загрязняющих веществ в атмосферу от стационарных источников г. Минска в 2019 г., как и в предыдущие годы, преобладали оксиды азота и оксид углерода, которые в сумме составляют 69 % общего объема выбросов от стационарных источников выбросов в столице. Углеводороды и неметановые летучие органические соединения (НМЛОС), твердые вещества и диоксид серы составляют незначительную величину.

	1			_		Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. инв. №

Анв. Ne подл.

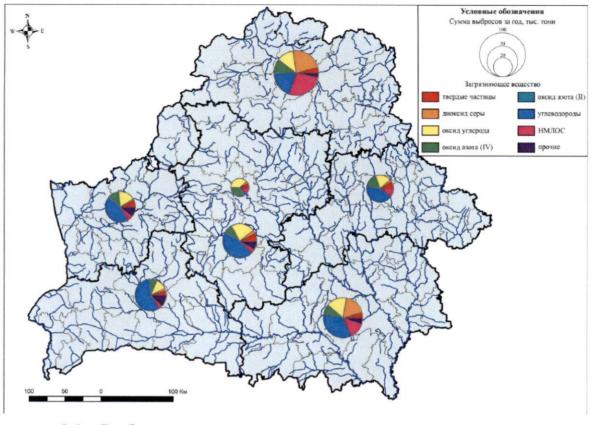


Рисунок 2.1 – Выбросы основных загрязняющих веществ в атмосферный воздух от стационарных источников в разрезе областей и г. Минск в 2019 году

Удельный валовой выброс от стационарных источников по республике в 2019 году составил 45,3 кг/чел., что обусловлено снижением валового выброса по республике. В г. Минск отмечается самое низкое значение этого показателя (9,2 кг/чел.).

В структуре выбросов загрязняющих веществ в атмосферный воздух от мобильных источников г. Минск занимает второе место, опережая по этому показателю Брестскую, Витебскую, Гомельскую, Гродненскую и Могилевскую область. При этом доля выбросов от автомобильного транспорта в общем объеме выбросов загрязняющих веществ в атмосферный воздух от мобильных источников составляет 89 %.

Оценка состояния атмосферного воздуха проводится в рамках мониторинга атмосферного воздуха НСМОС. Для оценки состояния атмосферного воздуха используются максимальные разовые, среднесуточные и среднегодовые предельно допустимые концентрации загрязняющих веществ.

Соотношение среднегодовых концентраций основных загрязняющих веществ в городах Беларуси в 2019 году приведено на рисунке 2.2.

По итогам анализа данных выявлено, что среднегодовые концентрации твердых частиц (недифференцированной пыли/аэрозоля) в атмосферном воздухе г. Минск в 2019 году составили величину ниже предела обнаружения (менее 15 мкг/м³). В целом за пятилетний период (2015 – 2019 г.г.) содержание этого компонента в атмосферном воздухе г. Минск снизилось в 1,2 раза.

За период с 2015 по 2019 год в атмосферном воздухе г. Минск наблюдается тенденция снижения уровня загрязнения воздуха диоксидом азота в 1,2 раза и повышения в 2,5 раза - диоксидом серы (рис.2.3 - 2.4).

Изм.	Кол.уч	Лист	№док	Подп.	Дата

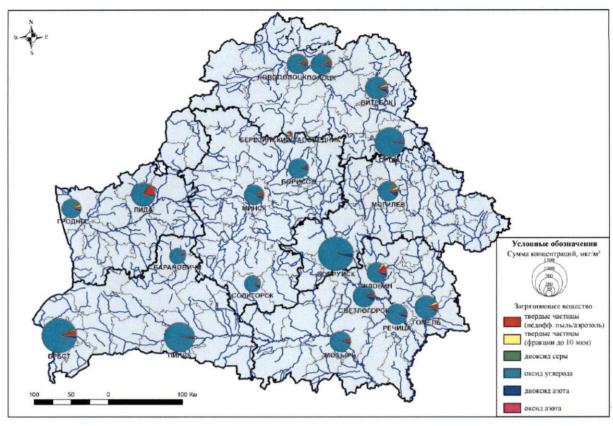


Рисунок 2.2 – Соотношение среднегодовых концентраций основных загрязняющих веществ в городах Беларуси в 2019 году

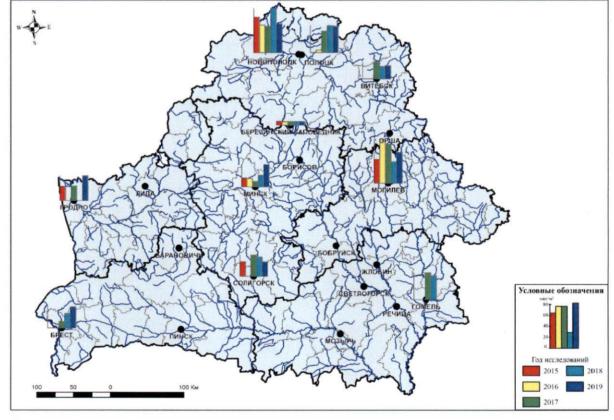


Рисунок 2.3 – Среднегодовые концентрации диоксида серы в атмосферном воздухе городов за 2015 - 2019 гг.

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Инв. № подл

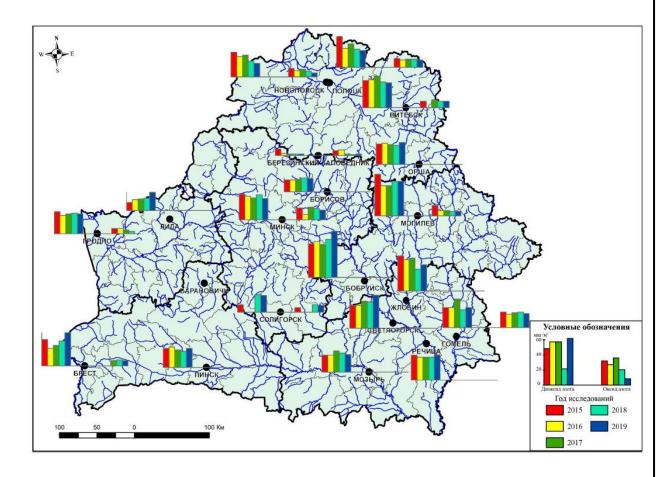


Рисунок 2.4 – Среднегодовые концентрации оксида азота и диоксида азота в атмосферном воздухе городов за 2015-2019 гг.

Существующий уровень загрязнения атмосферного воздуха также оценивается на основании информации о фоновых концентрациях загрязняющих веществ в атмосферном воздухе — количествах загрязняющих веществ, содержащихся в единице объема природной среды, подверженной антропогенному воздействию.

В таблице 2.5 приведены средние значения фоновых концентраций загрязняющих веществ в атмосферном воздухе г. Минска, предоставленные ГУ «Республиканский центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды (БЕЛГИДРОМЕТ)».

Таблица 2.5 – Фоновое загрязнение атмосферного воздуха (г. Минск)

20-5-5-1-5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	ПДК,	Фоно	вые концентрации			
Загрязняющие вещества	мг/м ³	мг/м ³	ед. ПДК			
Диоксид серы	0,5	0,034	0,068			
Диоксид азота	0,25	0,062	0,248			
Оксид углерода	5	0,716	0,143			
Твердые частицы (суммарно)	0,3	0,087	0,29			

Как видно из таблицы, средние значения фоновых концентраций по основным контролируемым веществам не только не превышают нормативов качества атмосферного воздуха, но и существенно ниже. Средние значения фоновых концентраций по основным контролируемым веществам составляют:

I							I
l							l
I	Изм.	Кол.уч	Лист	№док	Подп.	Дата	l

Взам. инв.

Подпись и дата

№ подл.

- 0,68 ПДК для серы диоксида;
- 0,143 ПДК для углерода оксида;
- 0,248 ПДК для азота диоксида.

Экологическая ситуация в районе стабильная, состояние окружающей среды благополучное.

2.1.3 Поверхностные воды

Гидрографическая сеть Минска представлена р. Свислочь и ее притоками (Цна, Слепянка, Лошица, Мышка, Переспа, Немига, Дражня и Тростянка), а также водохранилищами "Дрозды", "Комсомольское озеро", "Курасовщина", "Чижевское" и "Цнянское".

Свислочь берёт начало на Минской возвышенности, недалеко от горы Маяк (335 м над уровнем моря) на главном европейском водоразделе, в 39 км к северозападу от Минска у деревни Векшицы Минского района. Протекает по Центральноберезинской равнине, впадает в Березину у деревни Свислочь Осиповичского района. В 1976 году соединена с рекой Вилия (бассейн Немана) посредством Вилейско-Минской водной системы, в результате чего её полноводность в верховьях возросла в десятки раз. Сток зарегулирован рядом водохранилищ, наиболее крупными из которых являются Заславское («Минское море») и Осиповичское. Замерзает река обычно в декабре, вскрывается в марте - начале апреля.

В целях своевременного выявления негативных процессов, прогнозирования их развития, предотвращения вредных последствий и определения степени эффективности мероприятий, направленных на рациональное использование и охрану поверхностных вод осуществляется мониторинг поверхностных вод за гидрологическими, гидрохимическими и гидробиологическими показателями состояния поверхностных вод.

Для оценки уровня загрязнения водных объектов использовались утвержденные в республике показатели качества воды и нормативы предельно допустимых концентраций (ПДК). Это биологическое потребление кислорода - БПК₅, азот аммонийный, азот нитритный, фосфор фосфатов и нефтепродукты (приоритетные), а также нитраты, фосфор общий и синтетические поверхностно-активные вещества — (СПАВ). Большинство этих показателей рекомендовано европейским сообществом и позволяет сопоставить оценку состояния поверхностных вод Республики Беларусь и других стран. Для комплексной оценки качества поверхностных вод по гидрохимическим показателям использовался индекс загрязненности вод (ИЗВ).

По данным наблюдений 2019 года, к поверхностным водным объектам, наиболее подверженным антропогенной нагрузке, относятся участки рек: Свислочь н.п. Королищевичи и Лошица в черте г. Минск.

Свислочь является наиболее загрязненной рекой республики. Вместе с тем, по сравнению с предыдущим отчетным периодом (2018 год) в 2019 году улучшился экологический статус по гидробиологическим показателям р. Свислочь, ниже н.п. Королищевичи с очень плохого до удовлетворительного.

В основном на качество поверхностных вод р. Свислочь н.п. Королищевичи оказывали влияние фосфат-ион и нитрит-ион. В 2019 г. по нитрит-иону и фосфат-иону были зафиксированы превышения ПДК в 100 % отобранных проб.

Максимум содержания нитрит-иона в воде р. Свислочь ниже н.п. Королищевичи, превышающий норматив качества воды в 8,8 раз наблюдался в октябре,

Подпись и дата Взам. инв. №	
Инв. № подл.	

Кол.уч Лист

№док

Подп.

аммоний-иона — в 5,85 раз в октябре, фосфат-иона — в 5,6 раз в июне, фосфора общего — в 2,95 раз в марте.

В воде р. Свислочь н.п. Королищевичи зафиксировано увеличение среднегодового содержания хрома общего с $0,005~\rm Mr/дm^3$ в $2018~\rm r.$ до $0,045~\rm Mr/дm^3$ в $2019~\rm r.$ Зафиксированный максимум хрома общего в $2019~\rm r.$ составил $0,445~\rm Mr/дm^3$ (89 ПДК) в октябре.

В 2019 году наблюдается снижение проб воды с избыточным содержанием фосфат-иона (с 42,3 % в 2018 г. до 35,6 % в 2019 г.). В 14,8 % проб воды отмечено превышение лимитирующего показателя по аммоний-иону, что ниже прошлогоднего показателя на 3,6 %. Динамика концентраций фосфат-иона и аммоний-иона в воде реки Днепр (р. Свислочь) представлена на рисунках 2.5 и 2.6 соответственно.

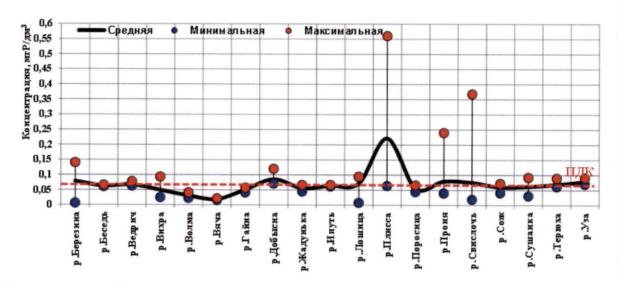


Рисунок 2.5 – Динамика концентраций фосфат-иона в воде притоков р. Днепр (р. Свислочь) в 2019 г.

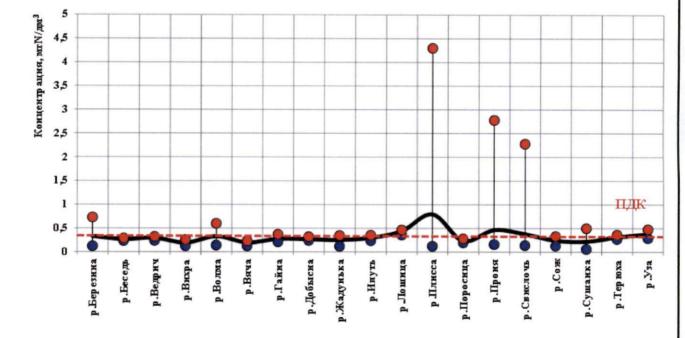


Рисунок 2.6 – Динамика концентраций аммоний-иона в воде притоков р. Днепр (р. Свислочь) в 2019 г.

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

NHB.

Подпись и дата

№ подл

На рисунке 2.7 представлена динамика концентраций нитрит-иона в воде притоков р. Днепр (р. Свислочь). Максимальные значения отмечены в воде р. Свислочь (0,21 мгN/дм³, 8,75 ПДК).

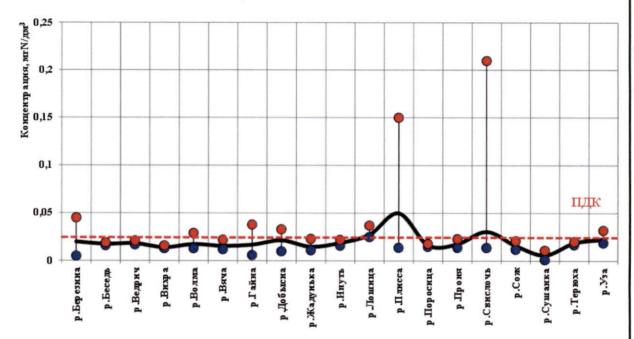


Рисунок 2.7 – Динамика концентраций аммоний-иона в воде притоков р. Днепр (р. Свислочь) в 2019 г.

Гидрохимический статус притоков бассейна р. Днепр оценивался как отличный и хороший. Участкам р. Свислочь (н.п. Свислочь, н.п. Королищевичи), р. Лошица присвоен удовлетворительный гидрохимический статус.

В 2019 году в воде притоков фиксировалось 5,2 % проб с превышением норматива качества воды по нефтепродуктам. Повышенные концентрации показателя наблюдались в воде рек Лошица (до 0,09 мг/дм³, 1,8 ПДК) и Свислочь с максимумом н.п. Королищевичи (0,11 мг/дм³, 2,2 ПДК). Содержание синтетических поверхностно-активных веществ в воде притоков не превышало норматив качества воды (0,1мг/дм³).

В 2019 году в воде притоков бассейна в большинстве пунктов наблюдений отмечались превышения нормативов качества воды по железу общему (81,8 % проб) и марганцу (81,7 % проб). Наибольшее содержание марганца зафиксировано в воде р. Свислочь н.п. Королищевичи (0,199 мг/дм³, 5,2 ПДК).

Избыточное среднегодовое содержание меди зафиксировано в воде реки Лошица (0,0092 мг/дм³, 2,1 ПДК).

Среднегодовое содержание цинка варьировало от $0,003~\text{мг/дм}^3$ в воде р. Гайна до $0,083~\text{мг/дм}^3$ в р. Свислочь (рисунок 2.8). В воде р. Свислочь н.п. Королищевичи зафиксировано увеличение среднегодового содержания цинка с $0,024~\text{мг/дм}^3$ в 2018~г. до $0,083~\text{мг/дм}^3$ в 2019~г. Зафиксированный максимум в 2018~г. составил $0,053~\text{мг/дм}^3$, $2019~\text{г.}-0,393~\text{мг/дм}^3$.

одл.						
Инв. № подл.						
_	Изм.	Кол.уч	Лист	№док	Подп.	Дата

NHB.

Взам.

1240-П3-АП12

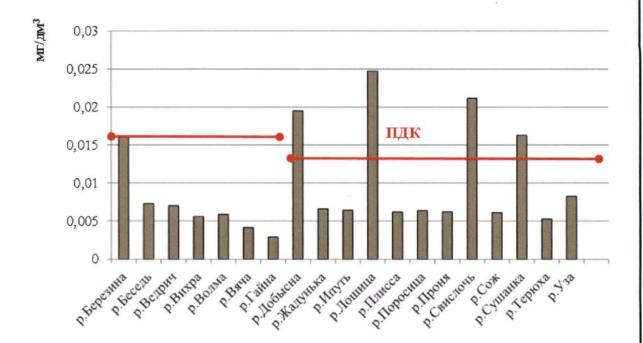


Рисунок 2.8 – Динамика среднегодовых концентраций цинка в воде притоков р. Днепр (р. Свислочь) в 2019 г.

2.1.4 Геологическая среда и подземные воды

На площадке проектируемого объекта проведены инженерно-геологические изыскания Витебским отделом инженерных изысканий (ВОИИ) ПРУП «Геосервис».

Площадка изысканий расположена на территории действующей Минской ТЭЦ-3. Территория характеризуется наличием большого количества подземных коммуникаций (водонесущих, электрокабелей), застроена. Значительная часть поверхности покрыта бетоном, асфальтом.

Площадка изысканий приурочена к флювиогляциальной равнине, поверхность которой изменена при строительстве ТЭЦ - спланирована насыпным грунтом. Больше половины поверхности покрыто бетонными плитами или заасфальтировано.

Территория застроена, характеризуется густой сетью коммуникаций.

Поверхностный сток обеспечивается системой ливневой канализации.

Неблагоприятные геологические процессы не выявлены.

Нормативная глубина сезонного промерзания грунтов по данным Госкомгидромета РБ составляет: супесей — 1,23 м, насыпных песчаных грунтов, песков средних, крупных, гравелистых - 1,32 м.

По данным инженерно-геологических изысканий в геологическом строении площадки участвуют:

Голоценовый горизонт

Техногенные (искусственные) образования (thIV). Насыпные грунты - отвалы песков различной крупности, в отдельных скважинах с примесью супеси, с включением гравия, битого кирпича, обломков бетона, маловлажные. Давность отсыпки более 15 лет. Мощность 0,2 - 4,5 м.

	Под						
	подл.						
-0.00 A	Инв. № подл.	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

1240-П3-АП12

Сожский горизонт

Флювиогляциальные надморенные отпожения (flls \check{z}^3). Пески мелкие, средние, крупные и гравелистые желтые, желто-бурые залегают с дневной поверхности и под насыпными грунтами.

Моренные отложения (glis \check{z}^3). Супеси красно-бурые с включением гравия и гальки, с прослойками (1...3 см) песков. Подстилают флювиогляциальные пески. Полностью не пройдены.

В соответствии с СТБ 943-2007, ГОСТ 20522-2012 на участке выделены следующие инженерно-геологические элементы (ИГЭ):

ИГЭ-1 — насыпной грунт песчаный. Насыпные грунты - отвалы песков различной крупности, в отдельных скважинах с примесью супеси, с включением гравия, битого кирпича, обломков бетона, маловлажные. Насыпные грунты слежавшиеся, давность отсыпки более 15 лет. Мощность 0,2 - 4,5 м. Происхождение связано со строительством и последующим благоустройством территории.

флювиогляциальные пески

ИГЭ-2 - песок мелкий средний,

ИГЭ-3 – песок мелкий прочный.

ИГЭ-4 – песок средний малопрочный с Рдвзв. = 1,4 МПа,

ИГЭ-5 – песок средний малопрочный с Рд_{вэв.} = 2,4 МПа,

ИГЭ-6 – песок средний средней прочности с Рдвзв. = 5,1 МПа,

ИГЭ-7 – песок средний средней прочности с Рдвзв. = 9,9 МПа,

ИГЭ-8 – песок средний прочный,

ИГЭ-9 – песок крупный малопрочный с Рд_{взв.} = 1,4 МПа,

ИГЭ-10 – песок малопрочный с Рдыв. = 2,5 МПа.

ИГЭ-11 – песок крупный средней прочности с Рдвзв. = 4,9 МПа,

ИГЭ-12 – песок крупный средней прочности с Рдвзв. = 10,5 МПа,

ИГЭ-13 – песок крупный прочный,

ИГЭ-14 – песок гравелистый средней прочности.

мореные супеси

ИГЭ-15 - прочные,

ИГЭ-16 - очень прочные.

Гидрогеологические условия

Грунтовые воды вскрыты на глубинах 9,8 - 10,6 м (абс. отм. 212,44 - 213,00 м). Приурочены к участкам понижения кровли мореных отложений. Водовмещающие грунты - надморенные пески мелкие, средние, крупные и гравелистые.

Из-за глубокого залегания грунтовых вод их химический состав на данном объекте не изучался. По результатам химических анализов грунтовых вод, выполненных на данном участке при инженерно-геологических изысканиях в 2013 году воды неагрессивны по отношению к бетону марок W4, W6, W8, W12 по водонепроницаемости при постоянном погружении, при периодическом смачивании - слабоагрессивны к арматуре железобетонных конструкций.

Мониторинг подземных вод. В 2019 г. наблюдения по гидрогеологическим показателям проводились на 93 гидрогеологических постах по 310 режимным наблюдательным скважинам, по гидрохимическим показателям — 25 скважин, из которых 10 — грунтовые воды и 15 — артезианские.

Качество подземных вод бассейна р. Днепр в естественных (слабонарушенных) условиях по основным макрокомпонентам в большинстве отобранных в 2018 — 2019 г.г. соответствовало установленным требованиям, за

Инв. № подл. Подпись и дата Взам. инв. №

Изм. Кол.уч Лист №док Подп. Дата

1240-П3-АП12

Превышений ПДК по содержанию нитрит-ионов, сульфат-ионов и хлоридионов в подземных водах на гидрогеологических постах в 2019 г. не зафиксировано.

В 2019 г. по результатам наблюдений по гидрогеологическим показателям установлено:

- территория республики характеризуется областью сезонного весеннего и осеннего питания, соответственно этим сезонам в годовом ходе уровней грунтовых и артезианских вод отмечаются подъемы, сменяемые спадами;
- колебания уровней напорных вод повторяют колебания уровней грунтовых вод, что подтверждает хорошую гидравлическую взаимосвязь между водоносными горизонтами и поверхностными водными объектами;
- прослеживался общий спад уровней как грунтовых, так и артезианских вод в среднем на 0,29 0,31 м, по сравнению с 2018 г:
- среднее снижение уровней подземных вод составило: бассейн р. Днепр 0,2 м для грунтовых вод и 0,3 м для артезианских вод.

2.1.5 Рельеф, земельные ресурсы и почвенный покров

Большую часть Минского района занимает Минская возвышенность, юговосточную окраину - Центральноберезинская равнина.

Минск расположен на юго-восточном склоне Минской возвышенности, имеющей моренное происхождение. Рельеф разнообразен. Колебания в черте города составляют почти 100 м. На западе в окрестностях Раковского шоссе наиболее возвышенная часть города с абсолютной высотой 280,4 м. Самая низкая отметка (184,1 м) находится на юго-востоке города в пойме Свислочи в районе Чижовки.

Важным элементом рельефа города является пологовогнутая долина реки Свислочь с двумя надпойменными террасами, расположенными на высоте 10 - 20 м над меженным уровнем реки. В сторону долины Свислочи местность понижается до 220 - 200 м. Юго-восточная окраина города постепенно выдвигается в сторону Центральноберезинской равнины, характеризующейся сглаженными формами рельефа, заболоченностью, слабой расчленённостью и небольшими уклонами.

В геоморфологическом отношении район расположен в Наровчано-Вилейской и Верхне-Березинской низинах, а также на пониженных склонах окружающих их возвышенностей. Значительные площади района сложены водноледниковыми и древнеаллювиальными песками, которые нередко перекрыты маломощными толщами связных и рыхлых супесей. В некоторых местах встречаются отдельные песчаные холмы и гряды, сложенные сортированными песчаными породами, которые содержат значительное количество хряща и валунов.

Земельные ресурсы

Взам. инв.

Подпись и дата

Инв. № подл.

По данным государственного земельного учета по состоянию на 1 января 2020 г. земельный фонд Минского района составлял 190,267 тыс. га. Основными землепользователями в районе являются сельскохозяйственные организации и организации, ведущие лесное хозяйство.

Удельный вес сельскохозяйственных земель района составляет 48,3 %, что выше среднеобластного уровня (46,1 %).

1					
			-		
Изм	. Кол.уч	Лист	№док	Подп.	Дата

1240-П3-АП12

В районе 775 га орошаемых сельскохозяйственных земель. Общая площадь всех осушенных земель в районе составляет 13,1 тыс. га.

Удельный вес лесных земель государственного лесного фонда и земель, занятых иной древесно-кустарниковой растительностью, составляет 33,6 %, что ниже среднеобластного уровня (42,8 %).

Удельный вес площадей под болотами и водными объектами в Минском районе составляет 3,2 %, что ниже среднего уровня по области (4,1 %). Площадь нарушенных, неиспользуемых и иных земель – 0,08 %.

Почвы

Согласно почвенно-географического районирования Беларуси почвенный покров рассматриваемой территории относится к Южной (Полесской) провинции северо-западного округа и входит в состав Вилейско-Докшицкого района дерновоподзолистых почв, развивающихся на моренных супесях, подстилаемых на различной глубине моренными суглинками. Этот крупный почвенно-географический район, охватывающий полностью территорию 5 и частично 14 административных районов четырех областей: Витебской, Минской, Гродненской и Могилевской.

В основном преобладают дерново-подзолистые сильно — и глубокооподзоленные, местами склабоэродированные почвы, развивающиеся на связанных водно-ледниковых слабозавалуненных супесях, подстилаемых песками или моренными суглинками.

В столице Беларуси, как и по всей стране, преобладают почвы супесчаного гранулометрического состава.

Использование почв при различных видах хозяйственной деятельности зачастую сопровождается их загрязнением, трансформацией или разрушением. В условиях Беларуси основными причинами деградации почв являются водная и ветровая эрозия, химическое и радиоактивное загрязнение, добыча и переработка полезных ископаемых, нарушение регламентов эксплуатации мелиорированных (осущенных) земель, подтопление и заболачивание земель, чрезмерные рекреационные нагрузки, лесные и торфяные пожары. Одним из наиболее значимых факторов является эрозия почв.

Водная эрозия развивается преимущественно в северной и в центральной части Беларуси, где широко представлены расчлененный холмистый рельеф и почвы тяжелого гранулометрического состава.

Нарушенные почвы образовались в результате добычи нерудных полезных ископаемых и проведения различного рода строительных и других земляных работ, сопровождающихся частичным или полным нарушением естественного строения почвенного профиля. На территории района они занимают незначительные площади.

Химическое загрязнение земель является одним из видов их деградации, при содержание химических веществ почвах, В подверженных антропогенному воздействию, превышает природный фон или нормативно допустимые уровни. В настоящее время в Беларуси площадь земель, загрязненных химическими веществами, составляет около 1,0 % территории страны. Эти земли приурочены к крупным городам и промышленным центрам с большим количеством предприятий транспортных средств. сельскохозяйственным угодьям, где используются средства химизации и защиты растений, участкам складирования коммунальных и промышленных отходов, а также территориям, попавшим в зону воздействия техногенных аварий.

Инв. № подл. Подпись и дата Взам. инв. №

Изм. Кол.уч Лист №док Подп. Дата

1240-П3-АП12

Взам. инв. №

Подпись и дата

Инв. № подл.

Почвенный покров принимает на себя давление потока промышленных и коммунальных выбросов и отходов, выполняя важнейшую роль буфера и детоксиканта. Почва аккумулирует тяжелые металлы, пестициды, углеводороды, детергенты, другие химические загрязняющие вещества, предупреждая тем самым их поступление в природные воды и очищая от них атмосферный воздух.

В 2019 году в рамках наблюдений за химическим загрязнением земель были проведены обследования почв на территории г. Минска. В пробах почв определялось содержание тяжелых металлов, сульфатов, нитратов, нефтепродуктов и показатель рН.

На территории г. Минска наблюдались локальные участки (аномалии) с высокими значениями (выше ПДК/ОДК) содержания в почве нефтепродуктов – до 4,7 ПДК, бенз/а/пирена – 1,1 ПДК, свинца – до 5,9 ПДК, цинка – до 11,8 ОДК, меди – до 5,52 ОДК, кадмия – до 3,8 ОДК, ртути – до 1,4 ПДК.

Техногенные нагрузки на почвы значительны и проявляются в накоплении загрязняющих веществ в почвах центральных частей городов, где велико влияние автотранспорта и сосредоточены промышленные предприятия.

Природная сопротивляемость почв, их естественная буферность, не беспредельны. Наибольшей буферной емкостью и способностью снижать негативное влияние загрязняющих веществ на растительные и животные организмы обладают почвы с высоким содержанием гумуса, с тяжелым гранулометрическим составом, высокой емкостью поглощения, обогащенные известковыми материалами (карбонатами). Сопротивляемость почв химическому водного режима, водопроницаемости, загрязнению также зависит OT преобладания нисходящих или восходящих токов влаги и т.п. Эти показатели наряду с уровнем сорбционной способности почв, отражаются на защитных функциях почвы по отношению к гидросфере и атмосфере.

2.1.6 Растительный и животный мир. Леса

Зеленым насаждениям в городах принадлежит значимая экологическая и социальная роль. Они выполняют средообразующие (климатообразующие, санитарно-гигиенические, архитектурно-планировочные), средозащитные (водо-, почво-, шумозащитные и др.), природоохранные, гуманитарные (эстетические, научнообразовательные, воспитательные, познавательные) и рекреационные функции.

Исследования показали, что в процессе жизнедеятельности растения способны задерживать и поглощать из воздуха: взвешенные частицы (аэрозоли и пыль), газообразные соединения — оксид и диоксид углерода, диоксид серы, сероводород, хлористый водород, аммиак, оксиды азота, формальдегид, бенз(а)пирен, тяжелые металлы и другие загрязняющие вещества, тем самым снижая их концентрацию в воздухе.

Парки, лесо-, лугопарки, скверы, сады, бульвары, водно-зеленые системы, а также леса активно используются горожанами для кратковременного отдыха. Поэтому организация экологически обоснованной и социально ориентированной системы ландшафтно-рекреационных территорий в городах страны является одной из ведущих задач, определяющей устойчивость городских экосистем, здоровую среду проживания для граждан.

Структура ландшафтно-рекреационного комплекса города Минска организована неравномерно. Высоким уровнем благоустройства отличается центральная, восточная и северо-восточная части города.

Благоприятным для города Минска является водно-зеленый ландшафт в пойме реки Свислочь и ее притоков, что пересекают город с северо-запада на

юго-восток. На протяжении 20 км он имеет ряд водоемов (Чижовское, Дрозды, Комсомольское озеро и др.), парков (Победы, им. Купалы, им. Колоса и др.) и зеленых зон.

В городе сохранились участки белорусских природных лесных массивов (парк 50-летия Октября, парк им. Челюскинцев и др.), где в составе деревьев (береза, ольха, ель) преобладает сосна.

Для озеленения города используются каштан, клен, липа, ряд видов тополя, боярышника, ивы, липы, береза повислая, береза пушистая, яблоня, лиственница и др. Согласно литературным данным наиболее газоустойчивыми являются клен и тополь, наибольшей газопоглотительной способностью обладают береза и липа.

В Минске встречается около 25 видов млекопитающих, 102 гнездящихся вида птиц, около 10 видов земноводных, а также пресмыкающиеся, насекомые, ракообразные. Разнообразие фауны обусловлено большой территорией города и способностью животных приспосабливаться к условиям городской среды (для некоторых видов эти условия более благоприятны, чем естественные).

2.1.7 Природные комплексы и природные объекты

В зоне воздействия Минской ТЭЦ-3 расположены объекты особо охраняемых природных территорий (ООПТ) — биологические заказники республиканского значения: «Стиклево» и «Глебковка».

Биологический заказник «Стиклево» расположен на юго-восточной окраине г. Минска и примыкает к автодороге. Создан был в 2001 году на месте бывшего танкового полигона с целью сохранения в естественном состоянии участков ценных лесных формаций с популяциями редких и исчезающих видов животных, птиц (одной из последних в Беларуси древесногнездящихся популяций пустельги обыкновенной) и растений.

Площадь заказника «Стиклево» составляет 412 га. Он представляет собой участок мохово-черничного елового леса со значительной примесью березы и сосны. Из встречающихся здесь растений в Красную книгу Беларуси занесены лилия кудреватая, арника горная и купальница европейская.

Разнообразие птиц обеспечивается за счет того, что данная территория граничит с частной застройкой и сельскохозяйственными угодьями, а также благодаря наличию открытых участков, зарастающих кустарником. В заказнике «Стиклево» встречаются некоторые виды, характерные для тайги: малая мухоловка, клест-еловик, зеленая пеночка, кедровка, воробьиный сычик.

Биологический заказник «Глебковка» создан в 2001 году с целью сохранения уникальных природных комплексов в естественном состоянии. Общая площадь заказника 964 га. На охраняемой территории находятся истоки реки Глебковка. Преобладают дерново-талево-подзолистая и супесчано-суглинистая почвы. Рельеф представлен среднехолмистой возвышенностью. Основная лесообразующая порода - сосна. Реже встречаются можжевельник, береза и ель.

В составе растительного мира 496 видов растений. В Красную книгу занесены 14 видов: хмель обыкновенный, живучка пирамидальная и др.

В состав фауны входят 70 видов птиц. Из них в Красную книгу занесена пустельга обыкновенная. Также в пределах охраняемой территории обитает 13 видов млекопитающих и 7 видов рептилий. Большое количество охотопромысловых животных.

2.2 Социально-экономические условия

Производственно-экономическая ситуация

подл.							
일						ΤП	
MHB.							
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам.

Подпись и дата

1240-ПЗ-АП12

Производственно-экономический потенциал Минска очень высок. Его основой является промышленность, которая производит 21,3 % республиканского объема промышленной продукции и в которой работает 27 % всех занятых города. На втором месте по занятости в сфере материального производства находятся торговля и общепит (16,7 %), затем следует строительство (10,1 %) и транспорт и связь (8,5 %).

Промышленность Минска многоотраслевая, но с преобладанием в объеме выпускаемой продукции машиностроения и металлообработки (54,3 %).

Самыми крупными предприятиями машиностроения являются производственные объединения и заводы: тракторный, автомобильный, «Интеграл», приборостроительный, «Горизонт», моторный, вычислительной техники, подшипниковый, «Атлант», колесных тягочей.

Высок также удельный вес пищевой промышленности (12,2 %) и электроэнергетики (10,9 %). Развиты легкая и промышленность строительных материалов, представлены химическая и лесная, деревообрабатывающая и целлюлозно-бумажная промышленность.

Наиболее крупными предприятиями легкой промышленности являются «Камволь», «Милавица», «Элема», СП «ЛеГранд» и «Отика», «Галантея».

Одним из ключевых показателей социально-экономического развития Беларуси является валовой внутренний продукт (ВВП). 26,9 % ВВП страны формирует г. Минск (данные за 2019 год).

Минск, находясь на пересечении трансъевропейских стратегических путей, является крупнейшим транспортным и информационно-коммуникационным узлом страны. На его долю приходится 20 % республиканского грузооборота автомобильного транспорта и более трети железнодорожных перевозок. Через аэропорты Минска авиакомпаниями СНГ и других зарубежных стран осуществляются регулярные и внерейсовые полеты.

Медико-демографическая ситуация

Медико-демографические показатели, такие как рождаемость, смертность, средняя продолжительность жизни и заболеваемость являются индикатором социально-экономического развития любого государства, показателями здоровья, уровня и образа жизни людей.

В 2019 году основные показатели, характеризующие демократическую безопасность, изменялись как в сторону улучшения, так и в сторону ухудшения. В целом же сохраняется низкий уровень воспроизводства населения: уровень превышение смертности над рождаемостью, неблагоприятная структура по полу и возрасту, прогрессирует постарение населения, особенно в сельской местности.

Согласно данным национального статистического комитета РБ численность населения в Минской области на 01.01.2020 года составила 1472 тыс. человек, что составило 15,6 % населения Республики Беларусь и область по численности населения по-прежнему располагается на 1 месте в республике среди областей. По-прежнему в структуре населения области преобладают женщины, в 2019 году численность женщин превышала численность мужчин: удельный вес женского населения составил 52,49 %, мужского — 47,51 %.

Численность городского населения на 01.01.2020 года в 1,2 раза превысила численность сельского и составила 55 %.

Подпись
Инв, № подл.

Взам.

Изм.	Кол.уч	Лист	№док	Подп.	Лата

Численность населения г. Минска на 01.01.2020 года составила 2020,6 тыс. человек и по сравнению с прошлым годом увеличилась на 28 тыс. человек или на 1,4 %. Рост численности населения города в 2019 году произошел исключительно за счет миграционного прироста. В возрастной структуре населения г. Минска, как и республики в целом, произошел существенный сдвиг в сторону лиц старшего возраста.

Рождаемость, наряду со смертностью, является основным демографическим процессом, оказывающим решающее влияние на характер воспроизводства населения. В соответствии с оценочными критериями Всемирной организации здравоохранения уровень рождаемости менее 15 на 1000 населения считается низким.

Начиная с 2016 года показатель рождаемости начал снижаться и в 2019 году составил 9,8 на 1000 населения, что отражает общереспубликанскую тенденцию. Если в предыдущие годы Минская область занимала лидирующее место в Республике Беларусь, то за последние пять лет рождаемость в области снизилась (с 13,5 до 9,8 на 1000 населения) при среднереспубликанском уровне 9,3 на 1000 населения.

Индикатором демографической безопасности является коэффициент депопуляции (это отношение числа умерших к числу родившихся). Предельно критическое значение его не должно превышать единицу, для того чтобы восполнялась естественная убыль населения. Своего максимума коэффициент депопуляции в Минской области достиг в 2002 году (1,63), значительно превысив критический показатель, после чего до 2016 года происходило его постепенное ежегодное сокращение до 1,08. В 2019 году коэффициент депопуляции продолжил рост и составил 1,39, а в 2018 - 1,31.

Еще один из важных медико-демографических показателей — естественное движение населения — разница между уровнями рождаемости и смертности. В Минской области на протяжении периода мониторинга вследствие преобладания уровня смертности над рождаемостью естественное движение населения характеризуется как отрицательное, т. е. наблюдается естественная убыль населения.

В Минской области в 2019 году родилось на 5623 человека меньше, чем умерло. Отрицательные тенденции медико-демографических показателей связаны с естественными процессами, протекающими в обществе.

В таблице 2.6 приведены основные медико-демографические показатели Минской области и Минского района за три последних года.

Таблица 2.6 – Основные медико-демографические показатели

Администра тивные территории	F	ождаемос	сть		Смертнос	ТЬ	Естест	венный пр	оирост
	2017	2018	2019	2017	2018	2019	2017	2018	2019
Минская область	11,5	10,7	9,8	14,0	14,0	13,6	0,8	0,8	0,9
Минский район	13,9	12,3	11,3	9,1	9,0	8,7	-2,5	-3,3	-3,8

На изменение численности населения влияют как естественные показатели (рождаемость, смертность), так и миграционные процессы, которые косвенно являются критериями благополучия населения. В 2019 году в Минской области в ми-

						Ī
						1
Изм.	Кол.уч	Лист	№док	Подп.	Дата	1

инв.

Взам.

Подпись и дата

Инв. № подл.

В результате миграционных процессов в 2019 году миграционный прирост населения Минской области составил 9617 человек (в 2018 году - + 6753 человека).

Смертность, как основной демографический показатель естественного движения населения, является наиболее существенным и значимым показателем уровня развития общества и прямо или косвенно указывают на благополучие общественного здоровья.

В Минской области в 2019 году умерло 19978 человек (в 2018 – 20040 человек). Показатель общей смертности населения в 2019 году снизился относительно 2018 года и составил 13,6 на 1000 населения, а по г. Минску - 8,9 на 1000 населения (рисунок 2.9).

Из 19 978 умерших от всех причин в 2019 году 3 975 человека (или 19,9 %) — это лица трудоспособного возраста. По сравнению с 2018 годом отмечен рост по-казателя смертности трудоспособного населения на 1,9 %, с 487,5 на 100 тысяч населения до 496,8 на 100 тысяч населения в 2019 году.

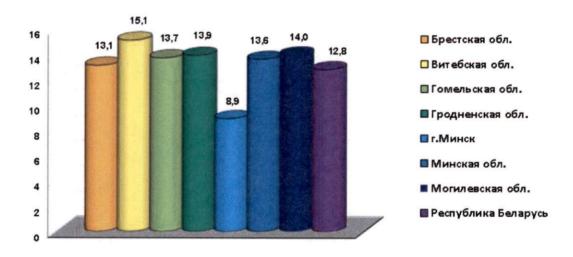


Рисунок 2.9 – Общие коэффициенты смертности населения по областям и г. Минску в 2019 году (на 1000 населения)

Основными причинами смерти населения Минской области в 2019 году были по прежнему болезни системы кровообращения (60,1 %), новообразования (14,7 %) и внешние причины (несвязанные с заболеваемостью - 6,6 %) от всех случаев смерти.

В структуре причин смертности населения Минской области в 2019 году (число случаев на 100 тыс. человек населения):

1-е место — болезни системы кровообращения 839,6 случаев (в 2018 году — 784,0), что составляет 60,1 % (в 2018 году — 55,8 %) от числа всех случаев смерти в области;

2-е место — новообразования 205,3 случаев (в 2018 году — 208,7), что составляет 14,7 % (в 2018 году — 14,9 %) от числа всех случаев смерти в области;

3-е место — внешние причины 91,8 случаев (в 2018 году — 95,1), что составляет 6,6 % (в 2018 году — 6,8 %) от числа всех случаев смерти в области;

Изм.	Кол.уч	Лист	№док	Подп.	Дата

NHB.

Подпись и дата

подл.

4-е место – болезни органов пищеварения составляют 3,6 % (в 2018 году – 3,3 %) от числа всех случаев смерти в области;

5-е место – болезни органов дыхания составляют 2,2 % (в 2018 году – 2,3 %) от числа всех случаев смерти в области.

Заболеваемость населения является важнейшим показателем общественного здоровья, самым объективным и чувствительным индикатором медико-социального благополучия. Снижение уровня заболеваемости населения имеет большое социальное и экономическое значение.

По статистическим данным Минской областной клинической больницы в 2019 году было зарегистрировано 2 223 476 случаев заболеваний острыми и хроническими болезнями, из которых 1 124 206 с впервые установленным диагнозом (50,6 %).

В структуре общей заболеваемости по группам населения в 2019 году дети от 0 до 17 лет составили 24,2 %, взрослые 18 лет и старше — 75,8 %, первичной заболеваемости — соответственно 40,4 % и 59,6 %.

Уровень общей заболеваемости, по данным обращаемости за медицинской помощью, по сравнению с предыдущим годом снизился на 0,64 % и составил 1554,3 на 1000 населения (в 2018 году — 1564,3 на 1000 населения).

Демографическая ситуация, состояние здоровья населения, а также социально-экономическая ситуация влияют на формирование показателя общей продолжительности жизни при рождении (ОПЖ). По данным национального статистического комитета РБ в 2019 году ОПЖ населения Минской области составил 73,6 года (у мужчин — 68,3 года, у женщин — 78,8 лет), что ниже республиканского показателя (74,5 года) на 1,2 %.

Ранняя диагностика заболеваний, своевременное выявление факторов риска для здоровья, дальнейшее повышение качества и доступности медицинской помощи, создание условий для охраны репродуктивного здоровья населения, материнства и детства являются основными задачами системы здравоохранения по обеспечению демографической безопасности. За последние годы проведены реконструкция и переоснащение организаций здравоохранения, внедрены современные медицинские технологии, улучшен ряд показателей здоровья населения. Вместе с тем проблемы здоровья населения сохраняют свою актуальность. Изменение возрастной структуры населения в сторону старения приводит к росту числа хронических неинфекционных заболеваний и инвалидности.

Демографические перспективы во многом зависят от мер социальной защиты населения, а от решения демографической проблемы - устойчивость и конкурентоспособность экономики и социальное развитие.

Для решения демографических проблем в Минской области предусматриваются мероприятия по укреплению здоровья, снижению уровня общей смертности, увеличению ожидаемой продолжительности жизни населения, улучшению репродуктивного здоровья населения, охране материнства и детства, увеличению рождаемости, усилению социально-экономической поддержки семей в связи с рождением и воспитанием детей, регулированию внешних миграционных процессов с учетом национальных интересов и др.

Инв. № подл. Подпись и дата Взам, инв. №

Изм. Кол.уч Лист №док Подп. Дата

1240-П3-АП12

3 ВОЗДЕЙСТВИЕ ОБЪЕКТА НА ОКРУЖАЮЩУЮ СРЕДУ

3.1 Источники и виды возможного воздействия планируемой деятельности

Любая намечаемая хозяйственная или иная деятельность оказывает воздействие на окружающую среду. Возможные воздействия на окружающую среду можно определить, исходя из следующих признаков:

- 1) изъятие из окружающей среды:
 - земельных ресурсов (пространственно-территориальных);
 - водных ресурсов;
 - ресурсов флоры и фауны;
 - полезных ископаемых;
 - агрокультурных ресурсов (плодородных земель):
- местообитаний популяций ценных видов растительного и животного мира;
 - культурных, исторических и природных памятников.
 - 2) привнесение в окружающую среду:
 - загрязняющих веществ;
 - шума и вибраций;
 - электромагнитных излучений.

К основным объектам этих воздействий относят компоненты окружающей природной среды, персонал предприятия, население, попадающее в зону воздействия, а также социально-экономические условия жизнедеятельности населения, включая занятость, демографические сдвиги, социальную инфраструктуру, этнические особенности и пр.

Возможные воздействия рассматриваемого объекта на окружающую среду связаны:

- с проведением строительных работ;
- с функционированием объекта.

В период эксплуатации ТЭЦ основное воздействие будет связано с загрязнением атмосферного воздуха в результате сжигания топлива, а также с водопотреблением и водоотведением.

3.2 Воздействие на атмосферный воздух. Прогноз и оценка изменения состояния атмосферного воздуха

Качество атмосферного воздуха является важным аспектом при оценке воздействия проектируемого объекта на окружающую среду.

Этапы реконструкции ТЭЦ-3 будут сопровождаться выбросами загрязняющих веществ в атмосферу.

При строительных работах основной вклад в загрязнение воздуха будут вносить следующие основные технологические процессы и спецтехника:

- демонтажные работы:

Подп.

- строительная и дорожная техника, используемые в процессе строительномонтажных работ;
 - сварочные и окрасочные работы.

Приоритетными загрязняющими веществами в период строительства являются твердые частицы суммарно, оксид углерода, азота диоксид, сажа, серы диоксид, углеводороды предельные С1-С10, углеводороды предельные С11-С19, пыль

	Взам. инв.	
	Подпись и дата	
	Инв. № подл.	
1		_

Изм.

Кол.уч Лист №док

На основании результатов оценки воздействия на компоненты окружающей среды в период строительства аналогичных объектов можно ожидать, что масштаб воздействия будет характеризоваться как:

- ограниченный (в радиусе до 0,5 км за пределами площадки размещения объекта);
 - продолжительный (от 1 года до 3 лет);
- с незначительной интенсивностью воздействия (изменения в окружающей среде не превышают существующие пределы природной изменчивости).

Исходя из этого, воздействие на атмосферный воздух в период строительства объектов оценивается как воздействие низкой значимости.

Реализация проектируемых строительных работ не приведет к значительным и устойчивым негативным последствиям для состояния атмосферного воздуха в данном районе города и не повлияет на здоровье населения.

В период эксплуатации ТЭЦ основное воздействие на атмосферный воздух будет связано с поступлением загрязняющих веществ в атмосферу в результате сжигания топлива.

3.2.1 Источники выбросов загрязняющих веществ в атмосферу

Существующие источники выбросов основного производства

Основными источниками выбросов загрязняющих веществ в атмосферу на ТЭЦ являются дымовые трубы, через которые дымовые газы, образующиеся в процессе сжигания топлива в котлах и газотурбинной установке, удаляются в атмосферу:

- дымовая труба ст. № 4 (ИВ № 4) высотой 100 м и диаметром устья 6,0 м, к которой подключены четыре водогрейных котла ПТВМ-100 (ст. № 1– 4);
- дымовая труба № 5 (ИВ № 5) высотой 180 м и диаметром устья 9, 6 м, к которой подключены три водогрейных котла КВГМ-180 (ст. № 5 7) и все паровые котлы ТП-80 (ст. № 6) и ТП-87 (ст. № 7 9);
- дымовая труба № 123 (ИВ № 123) высотой 60 м и диаметром устья 7,0 м, к которой подключена газовая турбина с котлом-утилизатором (без дожига).

Дымовая труба ст. № 3 высотой 100 м и диаметром устья 7,0 м законсервирована, и в проекте ДВ не рассматривается как источник выбросов загрязняющих веществ в атмосферу.

В 2016 году РУП «Белнипиэнергопром» разработан архитектурный проект «Минская ТЭЦ-3. Установка водогрейных электрокотлов с целью отпуска тепла в период глубокой разгрузки турбин после ввода Белорусской АЭС», проектные решения которого учтены при разработке настоящего проекта. Данным архитектурным проектом предусматривается установка двух водогрейных электрических котлов по 50 МВт каждый.

Настоящим проектом (3 пусковой комплекс) предусматривается:

- установка нового парового котла E-500-13,8-560 ст. № 10 производительностью 500 т/ч;
- ввод в работу дымовой трубы ст. № 3 с подключением к ней нового парового котла E-500-13,8-560 ст. № 10 и существующего котла ТП-87 ст. № 9;

				_		
	Ł					
						
Изм. Кол.уч Лист №док Подп. Да	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Инв. № подл

- вывод из работы котла ТП-87 ст. № 8, подключенного к дымовой трубе ст. Nº 5.

Таким образом, по настоящим проектным решениям:

- выводится из консервации дымовая труба ст. № 3 (ИВ № 3);
- претерпевают изменения существующие источники выбросов основного производства:
- а) ИВ № 5 в связи с выводом из работы котла ТП-87 ст. № 8 и переключением котла ТП-87 ст. № 9 на дымовую трубу ст. № 3;
- б) ИВ № 4 и ИВ № 123 в связи с изменением загрузки котлов и ГТ в максимальном режиме.

Существующие источники выбросов вспомогательных производств Согласно проекту ДВ на территории ТЭЦ-3 расположено 75 источников выбросов загрязняющих веществ, обусловленных работой вспомогательных производств, в том числе:

- мазутное хозяйство (ИВ № 53 61, 63, 64, 73, 6009);
- мазутонасосная (ИВ № 65 72);
- механические мастерские (ИВ № 22 32);
- пост пайки (ИВ № 79);
- посты сварки и газовой резки металлов (ИВ № 36, 37, 6001, 6002, 6003, 6004 - 6007):
 - очистные сооружения (ИВ № 6010);
 - мастерская по обработке дерева (ИВ № 102, 116);
 - XИМЦЕХ (ИВ № 6 14, 38, 39);
 - известковое хозяйство (ИВ № 15 20);
 - A3C (ИВ № 48, 49, 51, 52);
 - маслосистема турбин (ИВ № 44, 45, 47, 117 119);
 - лакокрасочные работы (ИВ № 6008):
 - переносные шлифмашинки (ИВ № 6011).

При реализации проектных решений параметры выбросов существующих источников выбросов вспомогательных производств остаются без изменений.

Проектируемые источники вспомогательных производств (1 пусковой комплекс):

а) пожарное депо:

Взам. инв. №

- гараж-стоянка на 6 пожарных автомобилей (ИВ № 124 126);
- пост техобслуживания автомобилей (ИВ № 127);
- мастерская техобслуживания (TO) (ИВ № 128);
- б) блок вспомогательных сооружений:
 - мойка автомобилей (ИВ № 129).

Карта-схема расположения проектируемых и существующих источников выбросов на производственной площадке Минской ТЭЦ-3 приведены в приложении В.

3.2.2 Обоснование расчета выбросов загрязняющих веществ

Топливосжигающее оборудование

Как уже отмечалось, для существующих и устанавливаемых котлов в качестве основного топлива будет использоваться природный газ, резервного - мазут;

						Г
		——				1
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	1

1240-П3-АП12

37

Характеристика топлив, принятая при определении выбросов загрязняющих веществ, согласно проекту ДВ, приведена в таблице 3.1.

Таблица 3.1 – Характеристика топлива

Вид топлива	Вид топлива Теплотворная способность, Q ^р н, Серосодержание, ккал/м ³ S ^р наих.								
	ккал/кг, ккал/м∼	S ^р наих.	A ^p , %						
<u>1</u> Газ* ⁾	8036 – – –								
2 Мазут	9067	1,2	0,055						
*) - массовая концентрация меркаптановой серы — 0,016 г/м³;									
массовая ко	нцентрация серовод	орода – 0,01 г/м ³ .							

При определении выбросов (г/с и т/год) диоксида серы содержание серы в мазуте принято 1,2 % согласно рекомендаций, приведенных в письме Минприроды РБ от 12.04.2018 № 11-16/1799.

Оценка загрязнения атмосферного воздуха выполнялась в максимум зимней нагрузки оборудования, соответствующей средней температуре наиболее холодной пятидневки. Рассматриваются три возможных варианта сжигания топлива и работы оборудования, при которых обеспечиваются санитарно-гигиенические нормативы качества атмосферного воздуха в зоне влияния Минской ТЭЦ-3 и соблюдаются требования ЭкоНиП 17.01.06-001-2017 «Экологические нормы и правила. Охрана окружающей среды и природопользование. Требования экологической безопасности».

Вариант 1 - 100% сжигание газа в часовом разрезе (существующие котлы и газовая турбина, вновь вводимый паровой котел сжигают природный газ). Причем на существующем котле ст. № 9 нагрузка ограничена - не более 355 т/ч (242 МВт).

Вариант 2 - одновременное сжигание газа и мазута (доля мазута в часовом потреблении не более 45 %).

При этом по данному варианту:

- мазут может сжигаться только на котлах, подключенных к дымовым трубам ст. № 4 и ст. № 5;
- на котлах, подключенных к дымовой трубе ст. № 3, сжигается газ, причем на существующем котле ст. № 9 нагрузка ограничена не более 355 т/ч (242 МВт);
 - ГТУ работает на газе.

Вариант 3 - одновременное сжигание газа и мазута (мазут сжигается только на проектируемом котле E-500-13,8-560 ст. № 10).

При этом по данному варианту:

- котел ст. № 9, подключенный к дымовой трубе ст. № 3, работает только на газе с ограниченной нагрузкой не более 355 т/ч (242 MBт);
- котлы, подключенные к дымовым трубам ст. № 4 и ст. № 5, работают на газе;
 - ГТУ работает на газе.

Состав топливосжигающего оборудования с расходами топлива по вариантам представлен в таблице 3.2.

Взам. инв. №	
Подпись и дата	
Инв. № подл.	

Кол.уч Лист

№док

Подп.

Дата

Инв. №	подл.	Подпись и дата	Взам. инв	a. №											
 												·		•	
Изм.									-						
Кол.уч.]	Таблица 3.2 – С	Состав т	гопли	восж	игаюш	его обо	рудовани	я и расхо	Л ТОППИВА ПО	DOORTV				
ч. Лист №док	1 ""	п и количество тановленного обој		Дым труба	овая	Номиі произ тельн котла	нальная води-	Максимал тепловая котлов	ьная	Количество котлов (ГТ) в работе	Максима часовой топлива на 1 коте	расход		товой рас топлива, тыс. ту.т.	
				Н, м	d, м	т/ч	Гкал/ч	T/4	Гкал/ч		т у.т./ч мазут	газ	Bcero	газ	мазут
Подп.			<u> </u>					Ran	 иант 1				<u> </u>		
Дата	1xl		<u>l</u> 10	100	7,0	500	_	500	-	1	<u> </u>	44,49	243,087	234,08	9.007
	1x	ГП-87 ст. № 9				420	_	355	-	1	_	32,45	68,529	68,529	
	Tn	-80 ст. № 6, ТП-87 с	ot. Nº 7	180	9,6	420		2x341,35		2	_	31,23	140,705	<u> </u>	3,655
	3xl	(ВГМ-180 ст. № 5 - 7	7				180		180	1	_	27,91	4,908	3,325	1,583
	4xſ	ТТВМ-100 ст. № 1 -	4	100	6,0		100		89,3	1	-	13,63	20,614	13,952	6,662
<u> </u>	1x[ТУ+КУ (без дожига))	60_	7,0	270		270		1		66,7	434,557	434,557	-
240-П3-АП12	_				1						<u> </u>	Итого:	912,4	891,493	20,907
<u> </u>								Варі	иант 2		 		1	·	
\exists	1xE	<u>500-13,8-560 ст. №</u>	º 10	100	7,0	500		500		1		44,49	243,087	234,08	9,007
\[\]	1xT	П-87 ст. № 9				420_		355	-	. 1	<u> </u>	32,45	68,529	68,529	-
≒	ТП-	80 ст. № 6, ТП-87 с	<u>τ. №</u> 7	180	9,6	420		2x397		2	35,32	-	140,705	137,050	3,655
12	ЗхК	<u>ВГМ-</u> 180 ст. № 5 - 7	,				180		180	11	28,32	_	4,908	3,325	1,583
	4 xΓ	ITBM-100 ст. № 1 - 4	4	100	6,0	-	100		92	1	14,3	-	20,614	13,952	6,662
	1хГ	ТУ+КУ (без дожига)		60	7,0	270		270	_	1	-	66,7	434,557		
1												Итого:	912,4	891,493	20,907

_				
Инв. № подл.	Подпись и дата	Взам. инв. №		
Z ₃				

Изм.	
Кол.уч. Лист	
Лист	
№док	
Подп.	
Дата	

Тип и количество установленного оборудования	Дымо труба		Номин произ тельн котла		Максимал тепловая котлов		Количество котлов (ГТ) в работе	Максимал часовой р топлива на 1 котел т у.т./ч	асход		овой рас топлива, тыс. ту.т.	ход
	Н, м	d, м	т/ч	Гкал/ч	т/ч	Гкал/ч		мазут	ras	Всего	газ	мазут
·	Вариант 3											
1xE-500-13,8-560 cт. № 10	100	7,0	_500	-	500	<u>.</u>	1	44,25	_	243,087	234,08	9,007
1хТП-87 ст. № 9			420	_	355	-	1	-	32,45	68,529	68,529	
ТП-80 ст. № 6, ТП-87 ст. № 7	180	9,6	420	-	2x348	-	2	-	31,78	140,705	137,050	3,655
3хКВГМ-180 ст. № 5 - 7				180		180	1	-	27,91	4,908	3,325	1,583
4хПТВМ-100 ст. № 1 - 4	100	6,0	_	100	-	2x53	2		8,0	20,614	13,952	6,662
1хГТУ+КУ (без дожига)	60_	. 7,0	270	_	270	<u>-</u>	1		66,7	434,557	434,557	_
									Итого:	912,4	891,493	20,907

Количество выбросов загрязняющих веществ от топливосжигающего оборудования определялось в соответствии с:

- ЭкоНиП 17.01.06-001-2017 «Экологические нормы и правила. Охрана окружающей среды и природопользование. Требования экологической безопасности»;
- ТКП 17.08-04-2006 «Порядок определения выбросов при сжигании топлива в котлах теплопроизводительностью более 25 МВт»;
 - ТКП 17.08-14-2011 «Правила расчета выбросов тяжелых металлов»;
- ТКП 17.08-13-2011 «Правила расчета выбросов стойких органических загрязнителей».

Существующее оборудование

При определении выбросов загрязняющих веществ (г/с и т/год) оксидов азота, углерода оксида и метана от существующей ГТУ в качестве норм выбросов приняты значения этих загрязняющих веществ согласно комплексному природоохранному разрешению, величины которых при нормальных условиях (температура 0 $^{\circ}$ C и давление 101,3 кПА) и коэффициенте избытка воздуха α = 3,5 (O_2 =15 %) составляют:

- $NO_x 100 \text{ Mr/m}^3$;
- CO 300 Mr/m³:
- метан 150 мг/м³.

Исключение составляют выбросы метана (углеводороды предельные алифатического ряда С₁-С₁₀). Системой АСК фиксируются предельные углеводороды суммарно в пересчете на метан, что предусмотрено в КПР. Нормативы выбросов метана от ГТУ устанавливать не требуется согласно ЭкоНиП и письму Минприроды РБ от 15.11.2017 № 12-4/557-ЮЛ-1.

Согласно ЭкоНиП 17.01.06-001-2017 для газотурбинных установок (таблица Е.14 приложения Е) установлены нормы выбросов общего органического углерода (летучие органические соединения ЛОС, за исключением метана).

Перечень ЛОС определяется видом сжигаемого топлива (природный газ) и компонентным составом природного газа. В состав природного газа (газопровод Торжок-Минск-Ивацевичи) входят:

- метан (CH₄, код 410) 98,043 %,
- этан (C₂H₆, код 418) 0,799 %,
- пропан (C₃H₈, код 417) 0,206 %,
- бутан (C₄H₁₀, код 402) 0,070 %,
- пентан (C₅H₁₂, код 405) 0.014 %.
- гексан (C₆H₁₄, код 403) 0,006 %;
- диоксид углерода 0,033 %;
- азот 0,821 %.

инв. №

Взам.

Подпись и дата

Инв. № подл.

Суммарное содержание углеводородов в природном газе составляет 99,138 %. Причем содержание метана (не входящего в ЛОС) составляет 98,043 %. На долю компонентов ЛОС (этан, пропан, бутан, пентан, гексан) приходится 1,095 %.

Пересчет углеводородов в уходящих газах, т. е. доля от общей массы углеводородов составит: метан — 0,98895, этан — 0,0081, пропан — 0,0021, бутан — 0,0007, пентан — 0,0001, гексан — 0,00006. Суммарно по всем ЛОС (т.е. доля общего органического углерода) составит 0,01106.

					
	_				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

1240-П3-АП12

- максимальный выброс (г/с):

$$M_i = C_i \cdot V_{sq} \cdot B_p \cdot k_p = (150 \cdot 0.01106) \cdot 32.41 \cdot 58.1 \cdot 0.278 \cdot 10^{-3} = 0.868 \text{ r/c};$$

из них выброс:

- этана (C₂H₆, код 418) 0,635 г/с;
- пропана (C₃H₈, код 417) 0.165 г/с:
- бутана (C₄H₁₀, код 402) 0,055 г/с;
- пентана (C_5H_{12} , код 405) 0,008 г/с;
- гексана (C₆H₁₄, код 403) 0,005 г/с.
- валовой выброс (т/год):

$$M_{\scriptscriptstyle I} = C_{\scriptscriptstyle I} \cdot V_{\scriptscriptstyle sq} \cdot B_{\scriptscriptstyle p} \cdot k_{\scriptscriptstyle p} = (150 \cdot 0,01106) \cdot 32,41 \cdot 378533,97 \cdot 10^{-6} = 20,353$$
 т/год,

где C_i - норма выброса общего органического углерода согласно таблице Е.14 приложения Е к ЭкоНиП, мг/м³, причем доля общего органического углерода составляет величину 0,01106;

 V_{sq} - объем сухих дымовых газов при α = 3,5 и нормальных условиях, образующихся при полном сгорании одного метра кубического газа, м³/м³;

 B_p - расход природного газа на ГТУ, тыс. м³/ч - при определении выбросов в г/с; тыс. м³/год – при определении выбросов в т/год;

 k_p - коэффициент пересчета: при определении выбросов в г/с равен 0,278*10⁻³, в т/год равен 10⁻⁶.

При определении максимально-разовых выбросов (г/с и т/год) оксидов азота и углерода оксида от существующих котлов: ТП-80, ТП-87 ст. № 6, 7, 9, КВГМ-180 ст. № 5 - 7 и ПТВМ-100 ст. № 1 - 4 использовались фактические измеренные концентрации загрязняющих веществ в дымовых газах согласно «Акту инвентаризации выбросов загрязняющих веществ в атмосферный воздух. Минская ТЭЦ-3», величины которых при нормальных условиях и коэффициенте избытка воздуха в сухих дымовых газах α = 1,4 (O_2 = 6 %) приведены в таблице 3.3.

Для сравнения в таблице 3.3 приведены нормы выбросов загрязняющих веществ при сжигании газообразного и жидкого топлива для котельных установок (мощностью свыше 100 МВт) согласно таблицам Е.2 и Е.4 приложения Е к ЭкоНиП 17.01.06-001-2017 «Экологические нормы и правила. Охрана окружающей среды и природопользование. Требования экологической безопасности».

Таблица 3.3 – Значения концентраций азота оксидов и углерода оксида

Наименование	Петрации				··-	
Паименование	Нагрузка Концентрация Концентрац					
	котла, Дф,	азота окси	ІЛОВ		-	
	т/ч, Гкал/ч	C _{NOx} a=1,4,	мг/м ³	углерода оксида, Ссо ^{α=1,4} , мг/м ³		
		данные	норма по	данные	норма по	
		замеров	ЭкоНиП	замеров	ЭкоНиП	
	при с	жигании ма	азута			
ТП-80 ст. № 6 (ввод в эксплуатацию 1961 г.)	420	600	350	150	300	

		_		_	
1	'				Γ
				 	ł
Кол.уч	Лист	№док	Подп.	Дата	1
	Кол.уч	Кол.уч Лист	Кол.уч Лист №док	Кол.уч Лист №док Подп.	Кол.уч Лист №док Подп. Дата

Взам. инв. №

Наименование	Нагрузка	Концентра	Концентрация			
	котла, Дф,	азота окси	ідов,	углерода оксида,		
	т/ч, Гкал/ч	$C_{NOx} \alpha = 1.4$,	<u>мг/м³</u>		мг/м ³	
		данные	норма по	данные	норма по	
		замеров	ЭкоНиП	замеров	_ЭкоНиП	
ТП-87 ст. № 7	420	600	350	150	300	
(ввод в эксплуатацию 1962 г.)						
КВГМ-180 ст. №№ 5-7	180	350	350	150	300	
(ввод в эксплуатацию 1983, 1984, 1990 г.)			•			
ПТВМ-100 ст. №№ 1-4	100	350	350	150	300	
(ввод в эксплуатацию 1964, 1965, 1965, 1967 г.)					Ų Į	
	при	сжигании г			-	
ТП-87 ст. № 6, 7	420	300	300	55	300	
(ввод в эксплуатацию 1961, 1962 г.)						
ТП-87 ст. № 9	420	300	300	55	300	
(ввод в эксплуатацию 1968 г.)			000			
КВГМ-180 ст. №№ 5-7	180	300	300	55	300	
(ввод в эксплуатацию 1983, 1984, 1990 г.)						
ПТВМ-100 ст. №№ 1-4	100	300	300	55	300	
(ввод в эксплуатацию 1964, 1965, 1965, 1967 г.)	.50	300	300	55	300	
1900, 1900, 1907 1.)						

Как видно из таблицы, при сжигании мазута паровые котлы ТЭЦ-3 (ТП-80 ст. № 6 и ТП-87 ст. № 7) по содержанию азота оксидов в дымовых газах не соответствуют требованиям упомянутого ЭкоНиП (таблица Е.4 приложение Е).

Согласно п.10.1.3 для котельных установок, введенных в эксплуатацию до 31 декабря 1974 года, в случае превышения фактической концентрации азота диоксида нормам выбросов, определенным в таблице Е.4 (приложения Е), при сжигании мазута устанавливается временный норматив допустимых выбросов азота диоксида в атмосферный воздух до 31 декабря 2022 года.

Проектируемое оборудование

Количество выбросов (г/с и т/год) оксидов азота и углерода оксида от вновь вводимого парового котла E-500-13,8-560 ст. № 10 определялось по значениям концентраций этих загрязняющих веществ в дымовых газах при нормальных условиях (температура 0 $^{\circ}$ C и давление 101,3 кПА) и коэффициенте избытка воздуха α = 1,4 (содержание кислорода в дымовых газах O_2 = 6 %), гарантируемых заводом-изготовителем оборудования:

- на мазуте: $NO_x 200 \text{ мг/м}^3$, $CO 250 \text{ мг/м}^3$;
- на газе: $NO_x 150 \text{ мг/м}^3$, $CO 250 \text{ мг/м}^3$.

Согласно таблицам Е.10 и Е.11 приложения Е ЭкоНиП нормы выбросов этих загрязняющих веществ в дымовых газах при нормальных условиях (температура 0 $^{\circ}$ С и давление 101,3 кПА) и коэффициенте избытка воздуха α = 1,4 для вновь вводимого котла (ввод после 1 января 2019 года) номинальной мощностью 350 МВт составят:

- при сжигании природного газа: $NO_x - 100 \text{ мг/м}^3$, $CO - 250 \text{ мг/м}^3$;

ı						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Подпись и дата

Инв. № подл.

Как при сжигании газа, так и при сжигании мазута вновь вводимый паровой котел Е-500-13,8-560 ст. № 10 по содержанию азота оксидов и углерод оксида (при сжигании мазута) в дымовых газах не соответствует требованиям ЭкоНиП (таблицы Е.10 и Е.11 приложения Е).

В случае если к дымовой трубе планируется подключение новых котельных установок, вводимых в эксплуатацию после 1 января 2019 года, требования к концентрациям загрязняющих веществ от которых приняты в утвержденной в установленном порядке до вступления в действие ЭкоНиП 17.01.06-001-2017 предпроектной документации (обосновании инвестирования в строительство), то возможно для таких установок превышение норм выбросов, установленных в таблицах Е.10 - Е.11, при условии не превышения предельного значения нормы выброса для котельной установки в целом (письмо Минприроды РБ от 24.08.2018 № 11-16/3901 «Об установлении норм выбросов для котельной установки»).

Норма выбросов для дымовой трубы ст. № 3 (ИВ № 3)

1) Сжигание природного газа на обоих котлах

Предельное значение нормы выбросов для дымовой трубы № 3 в целом при сжигании природного газа на обоих котлах составляет:

- азота оксида $C_j = 191$ мг / M^3
- углерод оксида $C_j = 272, 8_{MZ} / M^3$

Данный норматив по азота диоксиду при работе на газе может быть обеспечен в максимальном зимнем режиме работы ТЭЦ-3 при одновременной работе на дымовую трубу № 3 двух котлов с нагрузкой:

- проектируемый паровой котел 500 т/ч. Норма выброса азота оксидов по проекту - 150 мг/м³ согласно гарантиям завода-изготовителя;
- существующий котел ст. № 9 с ограничением нагрузки не более 355 т/ч (242 МВт). По представленным Минской ТЭЦ-3 материалам для существующего котла ТП-87 ст. № 9 при работе на газе при нагрузке не более 355 т/ч концентрация азота оксидов не превышает 240 мг/м³.

Рассчитываем норму выброса азота оксидов от котельной установки (дымовая труба ст. № 3) при работе на газе:

$$\begin{split} C_{j} &= \frac{C_{y1}^{1,4} \times V_{y1}^{1,4} + C_{y2}^{1,4} \times V_{y2}^{1,4}}{V_{y1}^{1,4} + V_{y2}^{1,4}} = \\ &= \frac{240 \times 12,37 \times (28,27 \times 1000/3600) + 150 \times 12,37 \times (38,75 \times 1000/3600)}{12,37 \times (28,27 \times 1000/3600) + 12,37 \times (38,75 \times 1000/3600)} = 188 \text{Me/m}^{3} \end{split}$$

Что не превышает ранее рассчитанного предельного значения.

2) Одновременное сжигание различных видов топлива в котлах (мазута в проектируемом котле ст. № 10 и природного газа в существующем котле ст. Nº 9)

В случае одновременного сжигания различных видов топлива (при сжигании мазута в проектируемом котле ст. № 10 и природного газа в существующем котле ст. № 9) предельное значение нормы выбросов в целом для дымовой трубы № 3 составляет:

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. инв. №

1240-П3-АП12

- углерод оксида
$$C_i = 246 Mz / M^3$$

Данный норматив по азота диоксиду при работе на мазуте проектируемого котла ст. № 10 и существующего котла ст. № 9 на газе может быть обеспечен в максимальном зимнем режиме работы ТЭЦ-3 при одновременной работе на дымовую трубу № 3 двух котлов с нагрузкой:

- проектируемый паровой котел 500 т/ч. Норма выброса азота оксидов по проекту 200 мг/м 3 согласно гарантиям завода-изготовителя;
- существующий котел ст. № 9 с ограничением нагрузки не более 355 т/ч (242 МВт). При работе на газе при нагрузке не более 355 т/ч концентрация азота оксидов не превышает 240 мг/м³.

Рассчитываем норму выбросов от котельной установки (дымовая труба ст. № 3) при одновременном сжигании мазута (на проектируемом котле ст. № 10) и природного газа (на существующем котле ст. № 9):

- азота оксида

$$C_{j} = \frac{C_{y1}^{1,4} \times V_{y1}^{1,4} + C_{y2}^{1,4} \times V_{y2}^{1,4}}{V_{y1}^{1,4} + V_{y2}^{1,4}} = \frac{240 \times 12,37 \times (28,27 \times 1000 / 3600) + 200 \times 13,83 \times (34,16 \times 1000 / 3600)}{12,37 \times (28,27 \times 1000 / 3600) + 13,83 \times (34,16 \times 1000 / 3600)} = 217 \text{ Me/m}^{3}$$

- углерод оксида

$$C_{co} = \frac{55 \times 12,37 \times (28,27 \times 1000 \ / \ 3600) + 250 \times 13,83 \times (34,16 \times 1000 \ / \ 3600)}{12,37 \times (28,27 \times 1000 \ / \ 3600) + 13,83 \times (34,16 \times 1000 \ / \ 3600)} = 167,1_{\textit{M2}} \ / \ \textit{M}^{3}$$

Что не превышает ранее рассчитанных предельных значений.

Валовые выбросы (т/год) загрязняющих веществ от проектируемого и существующих котлов определяются по формуле ЭкоНиП 17.01.06-001-2017, в которой $B_{\text{ср.}}$ х T х 3,6 = $B_{\text{год}}$,

где $B_{cp.}$ — средний расход топлива, кг/с (м³/с); T — время работы установки в год, ч.

О применении нормативов по диоксиду серы (SO₂) в соответствии с ЭкоНиП получены разъяснения от Минприроды РБ (письмо №11-16/1799 от 12.04.2018). Минприроды считает возможным устанавливать временные нормативы для SO₂ в случае аварийных ситуаций, предусматривающих сжигание мазута не более 700 часов в год. При этом проектная документация разрабатывается исходя из содержания серы в мазуте не более 1,2 %.

Число часов работы проектируемого котла E-500-13,8-560 ГМ на мазуте - 120 ч/год (5 суток), существующих котлов – по 120 ч/год (5 суток).

Сжигание мазута на проектируемом котле и существующих котлах возможно в случаях аварийных ситуаций: останова блока атомной электростанции, прекращения подачи природного газа, при проведении ремонтных работ на газораспределительном пункте, при проведении ремонтно-наладочных испытаний котлов при работе на мазуте.

Расчеты выбросов загрязняющих веществ, в том числе стойких органических загрязнителей (CO3) и тяжелых металлов от топливосжигающего оборудования по проекту, представлены в приложении Г.

100

Изм. Кол.уч Лист №док Подп. Дата

1240-П3-АП12

Вспомогательные производства

Проектируемый комплекс сооружений по пожарному депо (1 пусковой комплекс) состоит из:

- пожарного депо на 6 автомобилей:
- блока вспомогательных сооружений;
- тренировочной полосы 50 м;
- волейбольной площадки;
- спортивной площадки;
- тренировочной полосы 100 м с препятствиями.

В здании пожарного депо проектируются следующие производственные помещения, из которых могут выделяться загрязняющие вещества в атмосферу:

- гараж-стоянка на 6 автомобилей;
- пост технического обслуживания автомобилей (ТО);
- мастерская поста обслуживания.

В блоке вспомогательных сооружений осуществляется мойка автомобилей.

Основными источниками загрязнения атмосферы являются производственные процессы, связанные с техническим обслуживанием, текущим ремонтом, мойкой автомобилей.

Гараж-стоянка с постом ТО предназначен для хранения и ремонта 6 пожарных машин. Источниками выделения загрязняющих веществ в гараже-стоянке являются машины, перемещающиеся по стоянке.

Расчет выбросов загрязняющих веществ от гаража-стоянки с постом ТО и блока вспомогательных сооружений проводился по программе «АТП-Эколог», версия 3.0.1.13 от 01.09.2008 Copyright©1995-2008 ФИРМА «ИНТЕГРАЛ» и приведен в приложении Д.

Из помещения гаража-стоянки с постом ТО выбросы загрязняющих веществ удаляются с помощью 4-х центробежных вентиляторов (ИВ № 124 - 127).

Из помещения мастерской поста обслуживания выбросы загрязняющих веществ удаляются с помощью канального вентилятора (ИВ № 128).

Из помещения блока вспомогательных сооружений (мойка автомобилей) выбросы загрязняющих веществ удаляются с помощью центробежного вентилятора (ИВ № 129).

Помещение мастерской примыкает к гаражу-стоянке с постом ТО и ТР для удобства проведения ремонтных работ. Мастерская укомплектована оборудованием для проведения мелкого ремонта пожарной техники: механической обработки металлов.

При механической обработке металлов источниками образования и выделения загрязняющих веществ являются станки, при работе которых происходит образование твердых частиц (пыли – абразивной и металлической).

В мастерской поста техобслуживания установлено следующее оборудование:

- станок настольно-сверлильный Einhell BT-BD 501;
- станок точильно-шлифовальный ТШ-1 в комплекте с промышленным пылесосом BF 575. Степень очистки пылесоса 99,5 %.

Расчет выбросов при механической обработке металлов выполнялся в соответствии с ТКП 17.08-02-2006 «Правила расчета выбросов при сварке, резке, механической обработке металлов» и приведен в приложении Д.

Взам. инв. №	
Подпись и дата	
Инв. № подл.	-

	L				
Изм.	Кол.уч	Лист	№док	Подп.	Дата

Таблица параметров источников выбросов загрязняющих веществ в атмосферу от основного и проектируемого вспомогательного производств на существующее состояние и по проекту приведена в приложении Е.

Суммарные годовые выбросы загрязняющих веществ от Минской ТЭЦ-3 на существующее состояние (согласно комплексному природоохранному разрешению) и по проекту в целом (с учетом АП) приведены в таблице 3.4.

Существующий По проекту

(с учетом АП),

выброс

№ источ-

ника

Таблица 3.4 – Суммарные годовые выбросы по Минской ТЭЦ-3

Наименование

вещества

l	вещееты	Выорос	(C yaciow Ai i),	BNIKG
		(разрешение),	т/год	f
		т/год		<u> </u>
		щее оборудован		<u> </u>
1	Серы диоксид	3,295	121,87	Дымовая
2	Азот (IY) оксид (азота диоксид)	13,69	56,0	труба № 4
3	Азот (II) оксид (азота оксид)	2,23	9,1	1
4	Углерода оксид	9,24	18,94	1
5	Мазутная зола теплоэлектростанций (в пересчете на ванадий)*	0,008	0,6	1
6	Углерод черный (сажа)*	0,014	1,2	1
7	Бенз(а)пирен*	0,000149	0,000493	1
8	Кадмий и его соединения (в пересчете на кадмий)*	0,000003	0,000257	
9	Медь и ее соединения (в пересчете на медь)*	0,00002	0,001852	
10	Никель оксид (в пересчете на никель)*	0,002768	0,229647	1
11	Ртуть и ее соединения (в пересчете на ртуть)*	0,000025	0,000274	
12	Свинец и его неорганические соединения (в пересчете на свинец)*	0,000078	0,006481	
13	Хрома трехвалентные соединения (в пересчете на хром)*	0,00003	0,002469	
14	Цинк и его соединения (в пересчете на цинк)*	0,000	0,008332	
15	Мышьяк, неорганические соединения (в пересчете на мышьяк)*	0,000	0,000103	
16	Твердые частицы (недифференцированная по составу пыль/ аэрозоль)**	-	2,050	
	CO3:	1		1
16	Бензо(b)флуорантен	0,000	0,000]
17	Бензо(k)флуорантен	0,000	0,000]
18	Индено(1,2,3,c,d)пирен	0,000	0,000	1
19	Диоксины/фураны	0,000000	0,000000	1
20	ПХБ	0,000000	0,000000	1
21	ГХБ	0,000000	0,000000	
1	Серы диоксид	915,195	104,19	Дымовая
2	Азот (IY) оксид (азота диоксид)	1240,9	386,49	труба № 5
3	Азот (II) оксид (азота оксид)	201,64	62,8	
4	Углерода оксид	278,29	91,58	1
5	Мазутная зола теплоэлектростанций	3,016	0,47	(

Инв. № подл.

Изм. Кол.уч Лист №док

Подп.

Дата

Взам, инв.

1240-П3-АП12

	Наименование	Существующий	По проекту	№ источ-
	вещества	Выброс	(с учетом АП),	ника
	'	(разрешение),	т/год	
6	Углерод черный (сажа)*	т/год 5 173	0.04	
7	Бенз(а)пирен*	5,173	0,94	4
8	Бенз(а)пирен- Кадмий и его соединения (в пересчете	0,006491	0,001664	4
	на кадмий)*		0,000202	
9	Медь и ее соединения (в пересчете на медь)*	0,008	0,001456	
10	Никель оксид (в пересчете на никель)*	0,993463	0,180560	1
11	Ртуть и ее соединения (в пересчете на ртуть)*	0,0017014	0,000373	
12	Свинец и его неорганические соединения (в пересчете на свинец)*	0,028035	0,005095	1
13		0,011	0,001941	†
14	Цинк и его соединения (в пересчете на цинк)*	0,036	0,006551	
15	Мышьяк, неорганические соединения (в пересчете на мышьяк)*	0,000	0,000081	-
16	Твердые частицы (недифференцированная по составу пыль/ аэрозоль)**	-	1,608	
<u>16</u>	СОЗ: Бензо(b)флуорантен	0,000	0,000	1
17	Бензо(k)флуорантен	0,000	0,000	+
18	Индено(1,2,3,с,d)пирен	0,000	0,000	4
19	Диоксины/фураны	0,000000	0,000000	4
20	ПХБ	0,000002	0,000000	4
21_	ГХБ	0,000000	0,000000	_
1	Азот (IY) оксид (азота диоксид)	941,112	981,46	Дымовая
2	Азот (II) оксид (азота оксид)	152,931	159,49	ј дымовая ∣труба № 12
3	Углерода оксид	3529,17	3680,49	Thyoa ine ie
4	Метан	1764,59	3000,70	1
4*	Общий органический углерод		20,353	1
5	Ртуть и ее соединения (в пересчете на ртуть)	0,000533	0,00053	
6	Бенз(а)пирен	0,00005	0,00005	l
7	<i>CO3:</i> Бензо(b)флуорантен	0,000		l
8	Бензо(к)флуорантен	0,000	0,000	I
9	Индено(1,2,3,c,d)пирен		0,000	t
	Диоксины/фураны	0,000 0,000000	0,000	l
1	Серы диоксид		256,26	H. 110205
2	Азот (IY) оксид (азота диоксид)	-	459,84	Дымовая
	Азот (II) оксид (азота оксид)		74,72	труба № 3
	Углерода оксид			ı
5	Мазутная зола теплоэлектростанций		239,82 0,79	I
	(в пересчете на ванадий)*		5 ,. <u>-</u>	ı
<u>6</u>	Углерод черный (сажа)*		1,62	ı
	Бенз(а)пирен*	-	0,002067	
8	Кадмий и его соединения (в пересчете		0,000348	

Подпись и дата Взам. инв.

Инв. № подл.

Кол.уч

Лист

№док

Подп.

Дата

Изм.

1240-П3-АП12

	Наименование вещества	Существующий выброс (разрешение), т/год	По проекту (с учетом АП), т/год	№ источ- ника
	UO KORSHAMA	под		
9	на кадмий)* Медь и ее соединения (в пересчете на медь)*	-	0,002503	
10	Никель оксид (в пересчете на никель)*		0,310482	
11	Ртуть и ее соединения (в пересчете на ртуть)*	-	0,000717	
12	Свинец и его неорганические соединения (в пересчете на свинец)*	-	0,008762	
13	Хрома трехвалентные соединения (в пересчете на хром)*	-	0,003338	
14	Цинк и его соединения (в пересчете на цинк)*		0,011265	
15	Мышьяк, неорганические соединения (в пересчете на мышьяк)*	_	0,000139	
16	Твердые частицы (недифференцированная по составу пыль/ аэрозоль)**	-	2,750	
	CO3:			1
16	Бензо(b)флуорантен	-	0,000	!
17	Бензо(k)флуорантен		0,000	1
	Индено(1,2,3,c,d)пирен		0,000	1
18		 -		į .
18 19	Диоксины/фураны	· <u> </u>	0,000000	
		-	0,000001	
19	Диоксины/фураны			
19 20	Диоксины/фураны ПХБ ГХБ	-	0,000001 0,000000	
19 20 21	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них	9061,583461	0,000001 0,000000 6729,811032	
19 20 21	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид	918,490	0,000001 0,000000 6729,811032 482,32	
19 20 21 1 2	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид)	918,490 2195,702	0,000001 0,000000 6729,811032 482,32 1883,79	
19 20 21 1 2 3	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид)	918,490 2195,702 356,801	0,000001 0,000000 6729,811032 482,32 1883,79 306,11	
19 20 21 1 2 3 4	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид	918,490 2195,702 356,801 3816,700	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83	
19 20 21 1 2 3	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)*	918,490 2195,702 356,801 3816,700 3,024	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86	
19 20 21 1 2 3 4 5	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)*	918,490 2195,702 356,801 3816,700 3,024 5,187	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86	
19 20 21 1 2 3 4 5	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен*	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86	
19 20 21 1 2 3 4 5 6 7 8	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен*	918,490 2195,702 356,801 3816,700 3,024 5,187	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274	
19 20 21 1 2 3 4 5 6 7 8	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 - 20,353	
19 20 21 1 2 3 4 5 6 7 8 8* 9	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод Кадмий и его соединения (в пересчете на кадмий)*	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 - 20,353 0,000807	
19 20 21 1 2 3 4 5 6 7 8 8* 9	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод Кадмий и его соединения (в пересчете на кадмий)* Медь и ее соединения (в пересчете на медь)*	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59 - 0,001116	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 20,353 0,000807 0,005811	
19 20 21 1 2 3 4 5 6 7 8 8* 9	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод Кадмий и его соединения (в пересчете на кадмий)* Медь и ее соединения (в пересчете на медь)* Никель оксид (в пересчете на никель)*	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59 - 0,001116 0,008	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 - 20,353 0,000807 0,005811 0,720689	
19 20 21 1 2 3 4 5 6 7 8 8* 9	Диоксины/фураны ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод Кадмий и его соединения (в пересчете на кадмий)* Медь и ее соединения (в пересчете на медь)* Никель оксид (в пересчете на никель)* Ртуть и ее соединения (в пересчете на ртуть)*	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59 - 0,001116 0,008 0,996231 0,002259	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 - 20,353 0,000807 0,005811 0,720689 0,001894	
19 20 21 1 2 3 4 5 6 7 8 8* 9 10 11 12	ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод Кадмий и его соединения (в пересчете на кадмий)* Медь и ее соединения (в пересчете на медь)* Никель оксид (в пересчете на никель)* Ртуть и ее соединения (в пересчете на ртуть)* Свинец и его неорганические соединения (в пересчете на ртуть)*	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59 - 0,001116 0,008 0,996231 0,002259	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 - 20,353 0,000807 0,005811 0,720689 0,001894 0,020338	
19 20 21 1 2 3 4 5 6 7 8 8* 9 10 11 12 13	ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод Кадмий и его соединения (в пересчете на кадмий)* Медь и ее соединения (в пересчете на медь)* Никель оксид (в пересчете на никель)* Ртуть и ее соединения (в пересчете на ртуть)* Свинец и его неорганические соединения (в пересчете на ртуть)* Свинец и его неорганические соединения (в пересчете на свинец)* Хрома трехвалентные соединения (в пересчете на хром)*	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59 - 0,001116 0,008 0,996231 0,002259 0,028113	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 - 20,353 0,000807 0,005811 0,720689 0,001894 0,020338 0,007748	
19 20 21 1 2 3 4 5 6 7 8 8* 9 10 11 12	ПХБ ГХБ Всего от топливосжигающего: из них Серы диоксид Азот (IY) оксид (азота диоксид) Азот (II) оксид (азота оксид) Углерода оксид Мазутная зола теплоэлектростанций (в пересчете на ванадий)* Углерод черный (сажа)* Бенз(а)пирен* Метан Общий органический углерод Кадмий и его соединения (в пересчете на кадмий)* Медь и ее соединения (в пересчете на медь)* Никель оксид (в пересчете на никель)* Ртуть и ее соединения (в пересчете на ртуть)* Свинец и его неорганические соединения (в пересчете на ртуть)* Хрома трехвалентные соединения (в пересчете на кармик) и его соеди	918,490 2195,702 356,801 3816,700 3,024 5,187 0,00669 1764,59 - 0,001116 0,008 0,996231 0,002259 0,028113 0,011 0,036	0,000001 0,000000 6729,811032 482,32 1883,79 306,11 4030,83 1,86 3,76 0,004274 - 20,353 0,000807 0,005811 0,720689 0,001894 0,020338	

Подпись и дата Взам, инв. №

Изм. Кол.уч Лист №док Подп. Дата

1240-ПЗ-АП12

	Наименование	Существующий	По проекту	№ источ-
	вещества	выброс	(с учетом АП),	ника
		(разрешение),	т/год	
		т/год		
	(в пересчете на мышьяк)*		<u> </u>	
17	Твердые частицы (недифференциро-	-	6,408	
	ванная по составу пыль/ аэрозоль)**			
	CO3:			
17	Бензо(b)флуорантен	0,000	0,000	
18	Бензо(k)флуорантен	0,000	0,000	
_19	Индено(1,2,3,c,d)пирен	0,000	0,000	
20	Диоксины/фураны	0,000000	0,000000	
21	ПХБ	0,000002	0,000001	
22	ГХБ	0,000000	0,000000	
	Всего от вспомогательных произ-	3,049	3,159589	-
	водств:	·		
	Всего по ТЭЦ-3:	9064,632	6732,971	-
* 0.		·		

^{*} Загрязняющие вещества, имеющие твердое агрегатное состояние;

Суммарный валовой выброс загрязняющих веществ от Минской ТЭЦ-3 по проекту не превысит разрешенного выброса согласно комплексному природоохранному разрешению (КПР).

3.2.3 Мероприятия по уменьшению выбросов загрязняющих веществ в атмосферу

В настоящее время для снижения образования оксидов азота на существующих котлах Минской ТЭЦ-3 применяются следующие мероприятия, приведенные в таблице 3.5.

Таблица 3.5 – Перечень мероприятий на котлах ТЭЦ-3

	топлива	
ТП-80 ст. № 6	газ	 рециркуляция дымовых газов в наружные обечайки горелок с г = 12 % при максимальной нагрузке и с г = 11 % при среднегодовой нагрузке; ступенчатое сжигание газа с долей воздуха, подаваемого во вторую ступень δ = 7 %
	мазут	 рециркуляция дымовых газов в наружные обечайки горелок с г = 12 % при максимальной нагрузке и с г = 13 % при среднегодовой нагрузке
ТП-87 ст. № 7	газ	 рециркуляция дымовых газов в периферийный канал горелок с r = 8,3 % при максимальной нагрузке и с r = 11 % при среднегодовой нагрузке; ступенчатое сжигание газа с долей воздуха, подаваемого во вторую ступень δ = 7 %
	мазут	 рециркуляция дымовых газов в периферийный канал го- релок с r = 22 % при максимальной нагрузке и с r = 25 % при среднегодовой нагрузке

Изм. Кол.уч Лист №док Подп. Дата						
Nam Kon vy Ther Neger Hour Tara.						
Nam Kon vy Duct Negov Dong Data						
	Изм.	Кол.уч	Лист	№лок	Подп.	Дата ·

Тип котла

Взам. инв.

Подпись и дата

Инв. № подл.

Вид

Применяемые мероприятия

^{**} Согласно ЭкоНиП 17.01.06-001-2017 в состав твердых частиц входит суммарное количество загрязняющих веществ, имеющих твердое агрегатное состояние, образующихся при технологических процессах и выбрасываемых в атмосферный воздух. В сумме валовых выбросов не учтены.

Тип котла	Вид топлива	Применяемые мероприятия
ТП-87 ст. № 9	газ	– рециркуляция дымовых газов в рассечку между воздушными каналами горелок с r = 12 % при максимальной нагрузке и с r = 16 % при среднегодовой нагрузке
	мазут	 рециркуляция дымовых газов в рассечку между воздушными каналами горелок с г = 18 % при максимальной нагрузке и с г = 20 % при среднегодовой нагрузке
KBΓM-180 cτ. № 5 - 7	мазут	– рециркуляция дымовых газов в воздушное дутье с r = 19 % при сжигании мазута с нагрузкой равной и выше 120 Гкал/ч

На водогрейных котлах ПТВМ-100 ст. № 1 – 4 мероприятий по подавлению образования оксидов азота не предусмотрено.

Автоматический контроль и учет выбросов загрязняющих веществ

В настоящее время на дымовой трубе от блока ПГУ (источник выброса ИВ № 0123) установлена система автоматического непрерывного контроля и учета выбросов загрязняющих веществ и парниковых газов (далее АСК).

Система АСК позволяет осуществлять непрерывный контроль за выбросами следующих веществ: CO, CO₂, SO₂, NO_x (в пересчете на NO₂) и метана.

По проекту в комплект поставки завода-изготовителя вновь вводимого парового котла E-500-13,8-560 AO «ЗиО» входит автоматизированная система контроля (АСК) за выбросами загрязняющих веществ и парниковых газов в атмосферный воздух.

Относительно системы АСК на дымовой трубе ст. № 3 РУП «Минскэнерго» подтверждает, что система АСК будет реализована до ввода объекта строительства «Реконструкция Минской ТЭЦ-3 с заменой выбывающих мощностей очереди 14 МПа. 1-ая очередь».

Планируется оснащение системами АСК следующих источников выбросов:

- ИВ № 0005 (ТП-80 ст. № 6, ТП-87 ст. № 7, КВГМ-180 ст. № 5в – 7в) в срок до 31.12.2022 г.

В настоящее время на ИВ № 0004 система АСК установлена и ведутся пусконаладочные работы.

3.2.4 Расчеты приземных концентраций

Воздействие намечаемой деятельности на атмосферный воздух оценивалось с позиции соответствия ожидаемого уровня загрязнения атмосферного воздуха, обусловленного Минской ТЭЦ-3, законодательным и нормативным требованиям, предъявляемым к качеству атмосферного воздуха.

Гигиенические характеристики загрязняющих веществ, содержащихся в выбросах Минской ТЭЦ-3, по которым выполнялись расчеты приземных концентраций, приведены в таблице 3.6.

<u> Таблица 3.6 – Нормативы качества атмосферного воздуха</u>

	THE TOPMETHER RETECTED ATMO	240h::010 B03	4yxa_			
Код	Наименование вещества	ПДК,	ПДК, мкг/м ³			
		максималь-	среднесуто-	опас-		
		но-разовая	чная	НОСТИ		
0301_	Азота диоксид	250,0	100.0	2		
0330	Серы диоксид	500,0	200,0	 -		

— —			_		
Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. инв. №

№ подл.

Код	Наименование вещества	ПДК,	мкг/м ³	Класс
		максималь-	среднесуто-	опас-
·		но-разовая	чная	ности
0337	Углерода оксид	5000,0	3000,0	4
2904	Мазутная зола электростанций	20,0	8,0	2
0703	Бенз(а)пирен		5 нг/м ³	1
0328	Углерод черный (сажа)	150,0	50,0	3
0124	Кадмий и его соединения (в пересчете на кадмий)	3,0	1,0	1
0140	Медь и ее соединения (в пересчете на медь)	3,0	1,0	2
0164	Никель оксид (в пересчете на никель)	10,0	4,0	2
0183	Ртуть и ее соединения (в пересчете на ртуть)	0,6	0,3	1
0184	Свинец и его неорганические соединения (в пересчете на свинец)	1,0	0,3	1
0228	Хрома трехвалентные соединения (в пересчете на хром)	10,0 -	ОБУВ	-
0229	Цинк и его соединения (в пересчете на цинк)	250,0	150,0	3
0325	Мышьяк, неорганические соединения (в пересчете на мышьяк)	8,0	3,0	2
2902	Твердые частицы (недифференциро- ванная по составу пыль/ аэрозоль)	0,3	0,15	3
2908	Пыль неорганическая, содержащая SiO ₂ менее 70 %	300,0	100,0	3
2754	Углеводороды предельные алифатиче- ского ряда С ₁₂ -С ₁₉	1000,0	400,0	4

Расчет загрязнения атмосферного воздуха выбросами загрязняющих веществ, обусловленными изменяемыми по проекту существующими источниками (дымовые трубы) и проектируемыми источниками вспомогательных производств (с учетом источников выбросов, выбрасывающих аналогичные вещества), выполнен по программе УПРЗА «Эколог 3» с учетом фоновых концентраций:

- на расчетной площадке шириной и длиной 18000 м с шагом расчетной сетки по ширине и длине 200 м;
- на расчетной площадке шириной и длиной 4000 м с шагом расчетной сетки по ширине и длине 50 м (от источников проектируемых вспомогательных производств);
 - в ближайшей жилой застройке (расчетные точки № 1 3);
 - на границе санитарно-защитной зоны (расчетные точки № 4 11);
- на расчетной площадке шириной и длиной 38000 м с шагом расчетной сетки по ширине и длине 200 м (для определения зоны воздействия Минской ТЭЦ-3);
- на территориях особо охраняемых природных территорий (расчетные точки № 21, 22).

Расположение расчетных точек на границе C33 и в жилых зонах приведено на ситуационном плане в приложении A, а на территориях особо охраняемых природных территорий – в приложении Б.

Подпись и дата	
Инв. № подл.	

Кол.уч Лист

№док

Дата

Расчет загрязнения атмосферы производился отдельно по каждому из загрязняющих веществ, приведенных в таблице 3.6, группам суммации и группе неполной суммации:

- свинец + серы диоксид (0184 + 0330);
- мышьяк + свинец (0184 + 0325);
- $-SO_2 + NO_2 (0301 + 0330);$
- SO₂ + NO₂ + зола мазута (в пересчете на ванадий).

Расчет загрязнения атмосферного воздуха выполнен в приземном слое и по вертикали с учетом высоты жилых зданий.

Результаты расчетов рассеивания выбросов загрязняющих веществ в приземном слое от дымовых труб (с учетом источников вспомогательных производств, выбрасывающих аналогичные вещества) по всем вариантам работы топливосжигающего оборудования представлены в приложении Ж.

Значения приземных концентраций в точках максимального загрязнения на расчетной площадке, максимальные значения в расчетных точках жилых зон и в расчетных точках на границе C33 по проекту приведены в таблице 3.7.

Причем по ряду загрязняющих веществ расчет рассеивания не целесообразен:

- кадмий и его соединения (в пересчете на кадмий);
- медь и ее соединения (в пересчете на медь);
- ртуть и ее соединения (в пересчете на ртуть);
- хром трехвалентные соединения (в пересчете на хром);
- цинк и его соединения (в пересчете на цинк);
- мышьяк, неорганические соединения (в пересчете на мышьяк).

По результатам выполненных расчетов рассеивания выбросов загрязняющих веществ и результатам, приведенным в таблице 3.7 видно, что максимальные приземные концентрации загрязняющих веществ в атмосферном воздухе по всем рассматриваемым вариантам не превышают нормативов качества атмосферного воздуха по всей зоне воздействия, что отражено на картах рассеивания.

Учитывая, что в зоне максимального загрязнения Минской ТЭЦ-3 расположена высотная жилая застройка (9, 12, 19-и этажные здания) был выполнен расчет рассеивания по вертикали с учетом высоты жилых зданий (расчетные точки № 14 – 20).

Расположение расчетных точек в жилых зонах приведено на ситуационном плане в приложении А.

Перечень расчетных точек и их характеристики приведены в таблице 3.8.

_	
Взам. инв. №	
Подпись и дата	
Инв. № подл.	

Инв. № подл.	Подпись и дата Взам.	инв. №			•	44			•
	Таблица 3.7 - Максима	льные призем	иные конце	нтрации,	обусловленн	ые Минскої	й ТЭЦ-3		
] 	Наименование				маль <u>ные призе</u> г			ĸ	
Twen	вещества, группы	Hai	границе СЗЗ	· · · · · · · · · · · · · · · · · · ·		ых точках жиз			 ной площадке
No.	суммации	№ расчетной точки	с учетом фона	без учета фона	№ расчетной точки	с учетом фона	без учета фона	с учетом фона	без учета фо
					Вариант 1				
'	Диоксид азота	7	0,34	0,05	2	0,34	0,1	0,42	0,2
	Диоксид серы	9	0,05	<0,01	3	0,04	<0,01	0,05	<0,01
	Оксид углерода	9	0,22	<0,01	3	0,22	<0,01	0,26	0,01
	Бенз/а/пирен	10	0,03	<0,01	3	0,03	<0,01	0,04	0,01
	Пыль неорганическая, содержащая SiO₂ менее 70 %	10	0,007	0,007	1	0,003	0,003	3,04*)	3,04*)
	Углеводороды предельные алифатического ряда C ₁₂ -C ₁₉	10	0,12	0,12	1	0,06	0,06	0,3	0,3
	Суммации:								
$\frac{1}{2}$	301+330	9	0,37	<0,01	3	0,37	0,01	0,4	0,17
240-П3-АП12	-			F	ариант 2	<u> </u>	, ,	-,	_,,
우ㅣㅑ	Диоксид азота	7	0,34	0,05	2	0,35	0,11	0,46	0,25
	Диоксид серы	5	0,11	0,10	2	0,13	0,12	0,24	0,23
$\overline{\omega}$ $\overline{\omega}$	Углерод черный (сажа)	5	<0,01	<0,01	2	0,01	0,01	0,01	0,01
 	Оксид углерода	9	0,22	<0,01	3	0,22	<0,01	0,26	0,01
4 L	Бенз/а/пирен	5	0,04	0,01	2	0,04	0,01	0,04	0,01
-	Мазутная зола	5	0,02	0,02	2	0,02	0,02	0,04	0,04
$\overline{\sim}$	Твердые частицы	5	0,18	0,01	1	0,18	0,02	0,27	<0,01
	Никель оксид (в пересчете на никель)	5	0,01	0,01	2	0,01	0,01	0,02	0,02
	Свинец и его неорганические соединения (в пересчете на свинец)	11	0,09	0,01	2	0,09	0,01	0,09	<0,01
	Пыль неорганическая, содержащая SiO₂ менее	10	0,007	0,007	1	0,003	0,003	3,04*)	3,04*)

Инв. № подл. Подпись и дата Взам. инв. №

L	_	
	<u>Г</u> зм.	
	Кол.уч. Лист	
	Пист	
	XOLEON	
	Dean	
Haid	בינו	

_
N
7
$\overline{\sim}$
~
$\overline{\omega}$
ĭ
\triangleright
一
7
10

Наименование			——— Максиі	мальные призег	мные концент	грации д ПЛ	<u>—</u> ——	
вещества, группы	Hai	границе СЗЗ			ых точках жил			ной площадке
суммации	№ расчетной точки	с учетом фона	без учета фона	№ расчетной точки	с учетом фона	без учета фона	с учетом фона	без учета фо- на
70 %				10 1111	φοι.α	pona	фонц	i iid
Углеводороды предельные алифатического ряда C ₁₂ -C ₁₉	10	0,12	0,12	1	0,06	0,06	0,3	0,3
Суммации:				-		-		
184+325	11	0,09	<0,01	2	0;09	<0,01	0,09	<0,01
184+330	5	0,19	0,1	2	0,2	0,13	0,27	0,24
301+330	5	0,44	0,15		0,45	0,21	0,6	0,47
Неполная суммация: 330+301+2904	5	0,27	0,1	2	0,28	0,14	0,38	0,31
			Вари	 •ант 3				<u> </u>
Диоксид азота	7	0,34	0,05	2	0,34	0,1	0,43	0,21
Диоксид серы	11	0,10	0,09	2	0,14	0.13	0,20	0,19
Оксид углерода	9	0,22	<0,01	3	0,22	<0,01	0,26	0,01
Бенз/а/пирен	4	0,04	0,01	2	0,04	0,01	0,04	0,01
Мазутная зола	11	0,02	0,02	2	0.03	0,03	0,03	0,03
Твердые частицы	10	0,18	0,01	2	0.18	0,02	0,27	<0,01
Никель оксид (в пересчете на никель)	11	0,01	0,01	2	0,01	0,01	0,02	0,02
Свинец и его неорганические соединения (в пересчете на свинец)	11	0,09	0,01	2	0,09	0,01	0,09	<0,01
Пыль неорганическая, содержащая SiO₂ менее 70 %	10	0,007	0,007	1	0,003	0,003	3,04*)	3,04")
Углеводороды предель- ные алифатического ря- да С ₁₂ -С ₁₉	10	0,12	0,12	1	0,06	0,06	0,3	0,3
Суммации:				-				
184+325	11	0,09	0,01	2	0,09	0,01	0,09	<0,01
184+330	11	0,19	0,10	2	0,21	0,14	0,26	0,19

Инв. № подл.	Подпись и дата Взам	. инв. №			•	•	·		•
	<u> </u>								
 	Наименование			Максил	иальные призек	иные концент	рации, д. ПД	К	
	вещества, группы	Ha	границе СЗЗ			их точках жил		На расчетной площадке	
	суммации	№ расчетной точки	с учетом фона	без учета фона	№ расчетной точки	с учетом фона	без учета фона	с учетом фона	без учета фо- на
	301+330	7	0,44	0,13	2	0,46	0,22	0,60	0,38
	Неполная суммация: 330+301+2904	7	0,27	0,09	. 2	0,29	0,15	0,38	0,25
	*) Максимальная приземна	я концентрация ло	кализована в г	тределах про	мплощадки ТЭЦ				
.									

Таблица 3.8 – Перечень расчетных точек и их характеристики

Номер	Координаты Высота,		Высота,	Тип точки	Комментарий
точки	точк	:и (м)	M		
	Χ	Y			
14	695	820	23	застройка	9-ти этажный дом
15 ^{*)}	822	717	19	застройка	9-ти этажный дом
16*)	1526,1	-61,9	19	застройка	9-ти этажный дом
17 ^{*)}	1646,5	-208,6	19	застройка	9-ти этажный дом
18 ^{*)}	1892,3	-485	26	застройка	12-ти этажный дом
19	1126	937	50	застройка	19-ти этажный дом
20	1088	·-1071	50	застройка	19-ти этажный дом
*) Высота х ТЭЦ-3	килых домо	в принята с	учетом их р	расположения в низине от	гносительно промплощадки

Результаты расчетов рассеивания выбросов загрязняющих веществ по вертикали (приложение И) показали, что в расчетных точках жилой застройки на высоте по всем загрязняющим веществам и группам суммации с учетом фона не наблюдается превышений нормативов качества атмосферного воздуха.

Результаты расчетов рассеивания выбросов, обусловленных проектируемыми источниками вспомогательных производств Минской ТЭЦ-3 (пожарное депо) С **УЧЕТОМ** существующих источников вспомогательных выбрасывающих производств. аналогичные вещества. представлены приложении К, а значения приземных концентраций приведены в таблице 3.7.

Как видно из расчета, максимальная приземная концентрация по пыли неорганической, содержащей SiO₂ менее 70%, составляет 3,04 ед. ПДК и будет локализована на территории промплощадки ТЭЦ-3. За пределами промплощадки ТЭЦ-3 по всей зоне воздействия по всем веществам санитарно-гигиенические нормативы в атмосферном воздухе не превышены.

Следовательно. ОНЖОМ сделать вывод. соответствии что, существующими критериями, ожидаемое воздействие на атмосферный воздух проекту реализации решений ПО оценивается как Неблагоприятного воздействия на атмосферный воздух на рассматриваемой территории наблюдаться не будет. Необратимых изменений в состоянии атмосферы не произойдет.

Учитывая масштаб воздействия (зона воздействия — радиус 9,2 км), продолжительность воздействия (многолетнее) и значимость изменений (незначительные), общая оценка значимости воздействия Минской ТЭЦ-3 на атмосферный воздух по трем параметрам составит 16 баллов (4х4х1=16), что соответствует воздействию средней значимости (на основании методики оценки значимости ТКП 17.02-08-2012).

3.3 Воздействие физических факторов. Прогноз и оценка уровня физического воздействия

3.3.1 Воздействие шума

Кроме выбросов загрязняющих веществ в атмосферу (химический фактор) на окружающую среду оказывает влияние и физический фактор — акустическое (шумовое) воздействие агрегатов ТЭЦ-3.

Шумовое (акустическое) загрязнение – это раздражающий шум антропогенного происхождения, нарушающий жизнедеятельность живых

L							
ı							Γ
ł							ł
ı							ı
I	Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. инв. №

Подпись и дата

Инв. № подл.

организмов и человека. Раздражающие шумы существуют и в природе (абиотические и биотические), однако считать загрязнением их неверно, поскольку живые организмы адаптировались к ним в процессе эволюции.

В основу гигиенически допустимых уровней шума для населения положены фундаментальные физиологические исследования по определению действующих и пороговых уровней шума. При гигиеническом нормировании в качестве допустимого устанавливают такой уровень шума, влияние которого в течение длительного времени не вызывает изменений во всем комплексе физиологических показателей, отражающих реакции наиболее чувствительных к шуму систем организма.

Предельно допустимый уровень физического воздействия (в т.ч. и шумового воздействия) на атмосферный воздух — это норматив физического воздействия на атмосферный воздух, при котором отсутствует вредное воздействие на здоровье человека и окружающую природную среду.

В настоящее время основными документами, регламентирующими нормирование уровня шума для условий городской застройки, являются:

- СанПиН «Шум на рабочих местах, в транспортных средствах, в помещениях жилых, общественных зданий и на территории жилой застройки», утвержденные постановлением Минздрава Республики Беларусь № 115 от 16.11.2011;
 - ТКП 45-2.04-154-2009. Защита от шума.

Основным источником шума в период проведения строительных работ будет являться работа строительной техники. Значительное уменьшение шумового воздействия при проведении строительных работ не представляется возможным. Однако данное воздействие будет дискретным и кратковременным, работа техники будет проводиться только в рабочие дни в рабочее время на территории предприятия. Вследствие вышеуказанного, планируемое строительство не повлечет за собой существенного увеличения шумовой нагрузки на ближайшую жилую зону.

По проекту основное оборудование устанавливается в закрытых помещениях.

Проектируемыми внешними источниками шумового воздействия на ТЭЦ-3 является:

- трансформатор ТДЦ-160000/110 кВ (источник шума ИШ № 33*), устанавливаемый у главного корпуса в осях 47 52;
- трансформатор ТРДНС-25000/10 кВ (источник шума ИШ № 34*), устанавливаемый у главного корпуса в осях 47 52;
- дымососы 2 шт. (источники шума ИШ № 41, 42), устанавливаемые на дымососной площадке между осями 52 57 и Д E;
- дутьевые вентиляторы 2 шт. (источники шума ИШ № 43, 44), устанавливаемые на дымососной площадке между осями 52 57 и Д E;
 - четырех секционная вентиляторная градирня (источник шума ИШ № 6*);
 - модульная компрессорная установка (источник шума ИШ № 45);
- два контейнера с оборудованием ЧРЭП циркуляционных насосов (источники шума ИШ № 46, 47).

Шумовое влияние проектируемых источников шума рассматривалось с учетом существующих источников шума на ТЭЦ-3 и проектируемых по АП «Минская ТЭЦ-3. Установка водогрейных электрокотлов с целью отпуска тепла в период глубокой разгрузки турбин после ввода Белорусской АЭС» источников шума:

- существующая дожимная компрессорная станция пункта подготовки газа (источник шума ИШ № 1);
 - существующие башенные градирни (источники шума ИШ № 2 6);

Изм.	Кол.уч	Лист	№док	Подп.	Дата

읟

Взам.

Подпись и дата

№ подл.

- существующее тягодутьевое оборудование (ИШ № 7 22);
- существующие трансформаторы (ИШ № 23 38);
- существующий газораспределительный пункт (ИШ № 40);
- проектируемый по АП трансформатор (источник шума ИШ № 39), устанавливаемый у главного корпуса.

Размещение существующих и проектируемых источников шума на территории ТЭЦ-3 представлено на генплане Минской ТЭЦ-3 (приложение Л).

1) Дожимная компрессорная станция пункта подготовки газа (ИШ № 1)

В настоящее время на ТЭЦ-3 для существующей ПГУ установлена газовая компрессорная контейнерного типа (источник шума ИШ № 1), состоящая из одного блока и работающая в автоматизированном режиме. Компрессор установлен в теплозвукозащитном контейнере. Максимально возможный уровень звукового давления на расстоянии 1 м от контейнера составляет 80 дБА.

2) Градирни (ИШ № 2 – 6)

На территории ТЭЦ-3 в настоящее время размещаются пять башенных градирен:

- две из которых № 1, 2 расположены в юго-восточной части территории станции;
 - три № 3, 4, 5 в юго-западной части.

По проектным решениям предусматривается демонтаж башенной градирни ст. № 5 (источник шума ИШ № 6) и установка 4-х секционной вентиляторной градирни (источник шума ИШ № 6*). Звуковая мощность вентиляторной градирни составляет не более 80 дБА.

Шум в башенных градирнях вызывает свободное падение воды. Излучаемая звуковая мощность пропорциональна расходу воды, скорости водяных капель в момент падения и глубине воды в бассейне.

Уровень звуковой мощности в башенных градирнях рассчитывается по формуле

$$L_p = L_{p\tau p} + 10lgq,$$

где $L_{\text{ртр}}$ — поправка, зависящая от среднегеометрической частоты, принимается по В.Б. Тупов «Снижение шума от энергетического оборудования», с.57;

q – расход воды, $M^3/4$.

В таблице 3.9 приведен расчет звуковой мощности в башенных градирнях (источники шума ИШ № 2 – 5).

Таблица 3.9 - Расчет звуковой мощности в башенных градирнях

I AUJINHA 3.3 - LACAET 3BYNUB	AN MORE	HOGIN I	э уаш	MINDIX	Page	7117IX		
Наименование	Среднегеометрическая частота, Гц							
показателя	63	125	250	500	1000	2000	4000	8000
Поправка, зависящая от среднегеометрической частоты L _{ртр} , дБ	51	51	51	57	62	62	63	61
ИШ № 2 (существующий)								
УЗМ от одной градирни при расходе воды q = 4450 м³/ч, дБ	87,5	87,5	87,5	93,5	98,5	98,5	99,5	97,5
ИШ № 3 (существующий)								

				 -	
Изм.	Кол.уч	Лист	№док	Подп.	Дата

инв. №

Взам.

Подпись и дата

Инв. № подл.

Наименование	Среднегеометрическая частота, Гц							
показателя	63	125	250	500	1000	2000	4000	8000
УЗМ от одной градирни при расходе воды q = 4450 м³/ч, дБ	87,5	87,5	87,5	93,5	98,5	98,5	99,5	97,5
ИШ № 4 (существующий)								
УЗД от одной градирни при рас- ходе воды q = 9500 м³/ч, дБ	90,8	90,8	90,8	96,8	101,8	101,8	102,8	100,8
ИШ № 5 (существующий)								
УЗД от одной градирни при рас- ходе воды q = 9500 м³/ч, дБ	90,8	90,8	90,8	96,8	101,8	101,8	102,8	100,8

Основная часть звуковой мощности излучается градирней из ее воздуховходных окон, которая определяется по программе «Эколог-Шум» с использованием модуля «Расчет шума, проникающего из помещения на территорию». В приложении М.2 приведены значения шума, проникающего из помещения градирен на территорию.

3) Тягодутьевое оборудование (ИШ № 7 – 22, 41 - 44)

Существующие источники шума: восемь дутьевых вентиляторов типа: 2хВДН-26, 4хВДН-25 и 2хВД-20 (ИШ № 15 – 22), восемь дымососов типа Д-21 (ИШ № 7 – 14).

По проекту совместно с существующим котлом ТП-87 ст. № 8 выводятся из работы два дутьевых вентилятора ВД-20 (ИШ № 19, 20) и два дымососа типа Д-21 (ИШ № 11, 12).

Исходные данные для расчета шумового воздействия (шумовые характеристики дымососов и вентиляторов) приняты на основании «Рекомендаций по акустическому расчету котельных», 1984 и В.Б.Тупов «Снижение шума от энергетического оборудования», 2005 и приведены в таблице 3.10.

Таблица 3.10 – Шумовые характеристики от тягодутьевого оборудования

11						<u> </u>	HODUIN	171	
Наименование		Среднегеометрическая частота, Гц							
показателя	63	125	250	500	1000	2000	4000	8000	
1 Уровень звуковой мощ- ности (УЗМ) от одного ис- точника шума, дБ:					,				
дымосос Д-21 ^{**)} – 8 шт.	84	90	87,5	85,5	86,5	87,5	84,5	75,8	
вентилятор ВДН-25 – 4 шт.	108	109	111	110	108	105	102	93	
вентилятор ВД-20 ^{*)} – 2 шт.	88,5	93,2	92,5	92,5	93,3	92,8	87.0	81,5	
вентилятор ВДН-26 – 2 шт.	101,5	104	103	104	104	101,5	96	90	

По проекту:

Ne noan.

Совместно с устанавливаемым по проекту котлом E-500-13,8-560 ст. № 10 на дымососной площадке устанавливаются два дымососа (ИШ № 43, 44) и два дутьевых вентилятора (ИШ № 41, 42).

Уровень шума от дымососа в соответствии с техническими требованиями на дымососы 123.20.034 ТТ менее 80 дБА. Уровень шума от дутьевых вентиляторов в соответствии с техническими требованиями на дутьевые вентиляторы 123.20.033 ТТ менее 80 дБА.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

^{*)} вентиляторы выводятся из работы совместно с котлом ст. № 8;

^{**)} два дымососа выводятся из работы совместно с котлом ст. № 8.

- 4) Силовые трансформаторы (ИШ № 23 39) По настоящему проекту:
- а) демонтируются силовые трансформаторы:
 - ТДЦ-125000/110 (С7Т) источник шума ИШ № 33;
 - ТДН-15000/35 (Р8Т) источник шума ИШ № 34;
- б) проектируются силовые трансформаторы:
 - ТДЦ-160000/110 кВ источник шума ИШ № 33*
 - ТРДНС-25000/10 источник шума ИШ № 34*

Перечень силовых трансформаторов (источники шума ИШ № 23 – 38), расположенных в настоящее время на территории ТЭЦ-3, проектируемого по АП «Минская ТЭЦ-3. Установка водогрейных электрокотлов с целью отпуска тепла в период глубокой разгрузки турбин после ввода Белорусской АЭС» трансформатора (ИШ № 39) и проектируемых по настоящему проекту трансформаторов (ИШ № 33*, 34*) и их уровень звуковой мощности, определенный по ГОСТ 12.2.024-87 «Шум. Трансформаторы силовые масляные» приведен в таблице 3.11.

Два трансформатора 2хТРДН-63000/110 расположены в здании ЗРУ – ИШ № 37, 38 (в расчете шумового воздействия не учитываются), остальные – ИШ № 23 – 36 расположены около главного корпуса на открытой площадке.

Таблица 3.11 - Силовые трансформаторы

ИШ И₀И₀	Наименование	Тип трансформатора	Уровень звуковой мощности трансформаторов, дБА
23	 	ТДЦ-250000/110	109
24	ПТ1	ТДЦ-125000/110	106
25	21T	ТДНС-16000/15	88
26	1ТР (резервный)	ТРДНС-25000/110	89
27	Р30Т (резервный)	ТДН-15000/35	88
28 ⁻	P11T	ТДНС-16000/35	88
29	C5T	ТД-80000/110	98
30	P6T	ТДН-15000/35	88
31	C6T	ТДГ-70000/110	95
32	P7T	ТДНС-16000/35	88
33	C7T	ТДЦ-125000/110	106
		(демонтируется)	
34	P8T	ТДН-15000/35	88
<u> </u>		(демонтируется)	
35	C8T	ТДЦ-125000/110	106
36	P9T	ТРДНС-25000/15	89
37	1T	ТРДН-63000/110	
38	2T	ТРДН-63000/110	
39		ТРДЦН-125000/110	106
		(проектируемый по АП)	
33*		ТДЦ-160000/110 кВ	107
		(проектируемый по настоящему	
0.44		проекту)	00
34*		ТРДНС-25000/10	89
		(проектируемый по настоящему проекту)	
		i i pocki y j	

Инв. № подл.	Подпись и дата	Взам. инв. №

Изм. Кол.уч Лист №док

Подп.

Дата

5) Существующий газораспределительный пункт (ИШ № 40)

Шум в помещении существующего ГРП обусловлен течением газа, образованием вихрей, скачков уплотнений при дросселировании. Основные источники шума (дроссельные клапаны) расположены в здании.

Определяем уровень шумового воздействия дроссельных клапанов. Уровень суммарной звуковой мощности, излучаемой клапаном, определяется по формуле (В.Б.Тупов «Снижение шума от энергетического оборудования», с. 54)

$$L_p = L_{p\tau} + 10 \lg q + 20 \lg c + 10 \lg p - 30$$
,

где L_{pr} – поправка, зависящая от конструкции клапана и его относительного давления, определяется по рисунку 3.7 вышеназванной книги (в нашем случае C_f = 0,85, P_1/P_0 = 1,2 МПа / 0,09 МПа = 13,3) и равно 90;

q — расход газа, равен 110700 м 3 /ч и учитывая, что 1 м 3 природного газа весит 0,72 кг, q = 110700 х 0,72 = 79,7 т/ч;

с - скорость звука в клапане, м/с

$$c = \sqrt{kp/\rho} = \sqrt{(1.4 \cdot 1200 \cdot 10^3)/10} = 410 \text{M/c}$$

где р – давление до клапана, равно $1200 \times 10^3 \, \text{Па}$;

 ρ – плотность среды, равна 10 кг/м³;

к – коэффициент, зависящий от свойств среды, равен 1,4.

Следовательно, уровень суммарной звуковой мощности, излучаемой клапаном, составит

$$L_p = 90 + 10 \, lg79,7 + 20 \, lg \, 410 + 10 \, lg \, 10 - 30 = 141дБА.$$

Шум, излучаемый от клапана ГРП, проходит по газопроводам и излучается через стенки газопровода.

Уровень шума в трубе определяется по формуле

$$L_p = L_p - 10 \lg (S / 2),$$

где S – площадь сечения канала, M^2 , S = $\pi d^2/4$ = 1,13 M^2 (d = 1200 MM=1,2 M);

 L_{p} — уровень звуковой мощности, излучаемой клапаном, дБА.

Расчетный уровень шума в трубе составит:

$$L_p$$
 = 141 - 10 lg (1,13/2) = 143,5 дБА

Акустический расчет проводился с учетом того, что на газопроводе от ГРП, с целью снижения звуковой мощности и повышения звукоизоляции, применяется облицовка минераловатными плитами толщиной 100 мм и окожухование жестью толщиной 0,55 мм. Звукоизолирующая способность стенок газопровода при среднегеометрических частотах октавных полос принята по таблице 6 «Рекомендации по акустическому расчету котельных», 1984 и приведена в таблице 3.12.

Кол.уч

№док

Подп.

Таблица 3.12 - Звукоизолирующая способность стенок газопровода, дБ

Наименование		Cp	еднеге	метри	ческая	частота	а, Гц	
показателя	63	125	250	500	1000	2000	4000	8000
Снижение УЗМ звукоизоля- цией стенок стальных газо- проводов с облицовкой ми- нераловатными плитами, ΔL_i	37	30	38	40	40	41	44	48

Снижение УЗМ звукоизоляцией из дБ в дБА пересчитывается по формуле

$$\Delta L_p = 10 lg \sum_{j=1}^{n} 10^{0,1^{\bullet} lg(\Delta L_i t^{+\Delta K_j})},$$

где ΔL_i — снижение уровня шума в октавных полосах частот, дБ; $\Delta \kappa$ — поправки шумомера на соответствующих частотах.

$$\Delta L_p = 50,5$$
 дБА.

Учитывая снижение УЗМ звукоизоляцией газопровода, уровень шума от трубы составит 143,5 –50,5 = 93 дБА.

6) Модульная компрессорная установка (ИШ № 45)

Для снабжения технологических нужд сжатым воздухом предусматривается установка модульной компрессорной станции контейнерного типа. Модульная компрессорная станция работает в автоматизированном режиме и постоянного обслуживающего персонала не предусматривает. Уровень звукового давления на расстоянии 1 м от контейнера составляет 80 дБА.

7) Контейнеры с оборудованием ЧРЭП циркуляционных насосов (ИШ № 46, 47)

Оборудование ЧРЭП циркуляционных насосов размещается в двух контейнерах, устанавливаемых возле циркнасосной. Уровень звукового давления на расстоянии 1 м от контейнера составляет величину не более 80 дБА.

Анализ результатов расчета шумового воздействия

Расчеты шумового воздействия от совокупности проектируемых и существующих источников шума, расположенных на открытых площадках территории Минской ТЭЦ-3, выполнялись по программе «Эколог-Шум» для:

- расчетной площадки шириной и длиной 3000 м с шагом расчетной сетки по X и Y 100 м;
 - расчетных точек № 1 3 в ближайшей жилой застройке;
 - расчетных точек № 4 11 на границе санитарно-защитной зоны;
- расчетная точка № 13 на территории, непосредственно прилегающей к зданиям больничных организаций.

Акустический расчет проводили по уровням звукового давления в девяти октавных полосах частот со среднегеометрическими частотами 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц и по уровню звука, дБА.

При расчете учтены экранирующие свойства зданий и сооружений (расположенных на территории ТЭЦ-3 и за ее пределами) и ограждающего территорию ТЭЦ забора, позволяющие существенно снизить уровень шума от источника на пути его распространения.

Взам	
Подпись и дата	
Инв. № подл.	
Инв. № под	

Кол:уч

Лист

№док

Подп.

Дата

1240-П3-АП12

Как видно из результатов расчета (приложение М.1), уровень звукового давления в октавных полосах со среднегеометрическими частотами и уровень звука в дБА по мере удаления от источников шума снижается и в расчетных точках на границе санитарно-защитной зоны, ближайшей жилой застройке и на территории больницы достигнет величин, приведенных в таблице 3.13.

Результаты расчета (изолинии шума) по уровню звука в дБА экспортированы на ситуационный план расположения Минской ТЭЦ-3, что приведено в приложении М.1.

Таблица 3.13 – Результаты расчета уровня шума в расчетных точках

Наименование				ового д						
				цнегеом						
	31,5	63	125	250	500	1000	2000	4000	8000	L _A ,
										дБА
Расчетные точки в ближайшей жилой застройке										
PT № 1	44.5	42.8	41.5	39.8	36.6	32.8	25.7	12.3	0	38.00
PT № 2	40.4	38.6	37.2	35.8	30.6	24.5	15.3	1.1	0	31.90
PT № 3	41.3	41.6	40.8	39.6	34.9	30.5	24.9	15	0	36.60
		Расч	етные	точки	на гра	нице С	33			
PT № 4	42.8	40.7	37.3	34.2	28.5	21.6	7.9	0	0	30.10
PT № 5	42.8	40.8	37.5	34.8	29.1	22.8	13.1	4.3	0	30.80
PT № 6	44.3	42.7	41.9	41.1	36.5	31.8	27	19.4	8.4	38.20
PT № 7	41.3	42.1	42	40.9	35.9	31.5	26.8	19.2	8.1	37.90
PT № 8	44.8	45.2	44.5	43.2	38.3	34.1	29.2	22.2	7.8	40.30
PT № 9	43	43.2	42.9	42.2	38.9	35.7	31.2	24.3	9.2	40.90
PT № 10	39.4	39.5	39.5	39.4	36.3	32.8	27.5	18.5	0	37.90
PT № 11	44.6	42.9	40.4	38.5	33.9	28.6	20.8	5.7	0	35.20
		Расчеп	пная m	очка на	терри					30,20
PT № 13	38.9	39.8	38.9	37.1	31.1	25.3	16.2	0	0	32.90

Учитывая, что устанавливаемое по проекту и существующее технологическое оборудование работает постоянно (днем и ночью), и в направлении распространения шума располагаются жилые дома (северо-восточное, восточное, юговосточное и южное направления — расчетные точки № 1 - 8) и больница (югозападное направление - расчетная точка № 13), уровни звукового давления и уровни звука (дБА) сравниваем с нормативными значениями, ориентируясь на более жесткий ночной норматив для территорий, непосредственно прилегающих к жилым домам и зданиям больничных организаций.

В западном, северо-западном и северном направлении распространения шума (расчетные точки № 9 - 11) располагаются промышленные предприятия, поэтому уровни звукового давления и уровни звука (дБА) сравниваем с нормативными значениями, ориентируясь на норматив для территории предприятий.

Нормативные уровни шума для территорий, непосредственно прилегающим к жилым домам, зданиям больничных организаций и для территорий предприятий приведены в таблице 3.14.

Взам. инв. №	
Подпись и дата	
Инв. № подл.	

						Γ
						ĺ
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Таблица 3.14 – Нормативные уровни шума

Цориотивии	0								
Нормативные	Средн	<u>егеоме</u>	тричес	<u>кая ч</u> ас	стота, Г	Ц			Эквивалентны
величины	63	125	250	500	4000				е уровни звука
уровня шума	03	125	250	500	1000	2000	4000	8000	
	DDUTOD	1414 110=							La экв, дБА
 	рритор	ии, неп	осредс	твенно	прилег	ающие	к жилы	м дома	M
1 день, дь	75	66	59	54	50	47	45	43	55
2 Ночь, дБ	67	57	49	44	40	37	35	33	45
Территории,	непост	едстве	но при		IIIVA V 21	124464	60EL 111		<u> </u>
1 День, дБ	67	F7	40	44					рганизации
	67	57	49	44	40	37	35	33	45
2 Ночь, дБ	59	48	40	34	30	27	25	23	35
			Терри	тории г	редпри	ятий			
дБ	95	87	82	78	75	73	71	69	80

Сопоставляя полученные результаты с нормативными уровнями шума можно отметить, что расчетный уровень звукового давления в октавных полосах со среднегеометрическими частотами 31,5, 63, 125, 250, 500, 1000, 2000, 4000, 8000 Гц и уровень звука в дБА в жилой застройке, на территории больницы и на границе СЗЗ от совокупности всех проектируемых и существующих внешних источников шума не превышает нормативных значений.

3.3.2 Электромагнитное излучение

Среди различных физических факторов окружающей среды, которые могут оказывать неблагоприятное воздействие на человека и биологические объекты, большую сложность представляют электромагнитные поля.

Электромагнитное поле характеризуется вектором напряженности электрического поля Е и вектором магнитной индукции В. Электрическое и магнитное поле тесно взаимосвязаны, они представляют собой компоненты единого электромагнитного поля.

Согласно гигиеническим нормативам «Предельно-допустимые уровни электрических и магнитных полей тока промышленной частоты 50 Гц при их воздействии на население», утвержденным Постановлением Министерства здравоохранения Республики Беларусь от 12 июня 2012 г. № 67, предельно допустимые уровни напряженности (магнитной индукции) ЭП и МП 50 Гц на территории жилой застройки составляют:

- напряженность электрического поля 1 кВ/м;
- напряженность магнитного поля 8 А/м (магнитная индукция 10 мкТл).

Источниками электромагнитного излучения (ЭМИ) на площадке Минской ТЭЦ-3 по проекту являются устанавливаемые трансформаторы и распределительное устройство РУ 10 кВ.

Трансформаторы и распределительное устройство выполнены в металлических толстостенных корпусах, которые практически полностью поглощают проникновение электромагнитного поля в окружающую среду, поэтому их влияние пренебрежимо мало и локализуется в пределах территории ТЭЦ.

Кроме того, планировочные решения по размещению электротехнического оборудования на территории ТЭЦ-3 (трансформатор, РУ расположены на промплощадке на расстоянии не менее 200 м от ближайшей жилой застройки) позволяют исключить электромагнитное воздействие на селитебную территорию.

Таким образом, конструкции применяемого электротехнического оборудования и планировочные решения по размещению данного оборудования на ТЭЦ-3 позволяют исключить электромагнитное воздействие на ближайшую селитебную территорию.

	l				
L1	7				
Изм. К	⟨ол.уч	Лист	№док	Подп.	Дата

Взам. инв. №

3.3.3 Вибрация

Вибрация - механические колебания и волны в твердых телах. Действие вибрации зависит от частоты и амплитуды колебаний, продолжительности воздействия, места приложения и направления оси вибрационного воздействия, демпфирующих свойств тканей организма человека, явлений резонанса и других условий. Вибрация относится к факторам, обладающим высокой биологической активностью и может отрицательно влиять на работоспособность, эмоции и умственную деятельность. Подобно шуму, вызывает нарушение восприятия и оценки времени, снижает скорость переработки информации. При низких частотах возникает расстройство координации движений. Длительное воздействие вибрации может приводить к стойким патологическим отклонениям.

Источником вибрационного воздействия ТЭЦ на окружающую среду, в том числе и на ближайшую селитебную территорию, является оборудование с вращающимися составляющими (паровые турбины, электрические генераторы, питательные насосы, осевые вентиляторы, дожимные компрессоры и др.).

Применение оборудования с надёжными вибрационными характеристиками, исключающими распространение сверхнормативных вибраций за пределы промплощадки, а также антивибрационных мероприятий (антивибрационные опоры. отделение металлоконструкций каркаса оборудования металлоконструкций зданий. установка оборудования собственные фундаменты др.) позволяет обеспечить возможность локализовать вибрационное воздействие источников рассматриваемого объекта в пределах территории Минской ТЭЦ-3.

Исходя из выше изложенного, воздействие вибрации будет локальным и не окажет существенного влияния на территорию жилой застройки.

3.4 Воздействия на поверхностные и подземные воды. Прогноз и оценка изменения состояния поверхностных и подземных вод

3.4.1 Существующее положение

На территории ТЭЦ-3 действуют следующие системы водоснабжения и водоотведения:

- система технического водоснабжения;
- две системы оборотного охлаждения оборудования СОО-1 и СОО-2;
- система хоз.-питьевого и противопожарного водопровода;
- система производственно-противопожарного водопровода мазутного хозяйства (в том числе система охлаждения резервуаров мазута при пожаре);
 - система пенопожаротушения мазутного хозяйства;
 - система автоматического пожаротушения кабельных помещений;
- система бытовой канализации с отводом бытовых и минерализованных стоков ВПУ в городской коллектор бытовой канализации;
- система производственно-дождевой канализации с отводом производственных и дождевых стоков малой интенсивности через колодец-делитель в пруд дождевых стоков, дождя большой интенсивности в городской ливневой коллектор и использованием очищенных стоков из пруда на подпитку оборотной системы охлаждения оборудования (СОО-2);
 - система канализации нефтесодержащих сточных вод;
 - система шламоудаления продувочных вод осветлителей ВПУ;
 - система канализации обмывочных вод поверхностей нагрева котлов;
 - система канализации химических промывок котлов.

	L					Γ
	 					
 Изм.	Кол.уч	Лист	№док	Подп.	Дата	

Взам. инв. №

Подпись и дата

В настоящее время водолотребление и водоотведение Минской ТЭЦ-3 осуществляется на основании комплексного природоохранного разрешения №9 от 30.12.2015 г. (срок действия до 31.01.2025), выданного Минским городским комитетом Минприроды РБ.

3.4.1.1 Источники водоснабжения

Потребление воды Минской ТЭЦ-3 на технические цели обусловлено необходимостью:

- восполнения невозврата на ТЭЦ конденсата пара, отпускаемого потребителям и теряемого в цикле самой станции;
- восполнения невозврата на ТЭЦ сетевой воды, отпускаемой в систему централизованного теплоснабжения, из-за утечек и потерь в этой системе;
- восполнения потерь в оборотных системах охлаждения оборудования ТЭЦ, обусловленных испарением и уносом воды из градирен и необходимостью их продувки для обеспечения безнакипного режима;
- восполнением продувки установок водоподготовки ТЭЦ, обусловленной отводом минерализованных стоков в связи с невозможностью их использования в цикле станции;
 - использование воды на пожаротушение объектов ТЭЦ.

Потребление воды питьевого качества обусловлено его расходом на хозяйственно-питьевые цели и пожаротушение объектов ТЭЦ.

Источник технического водоснабжения

Источником технического водоснабжения ТЭЦ-3 является Чижовское водохранилище на р. Свислочь.

Речной русловой водозабор ТЭЦ-3 приплотинного типа. Створ плотины водохранилища ТЭЦ-3 расположен ниже устья р. Слепянка.

Резервным источником технического водоснабжения являются артезианские подрусловые скважины внешнего водозабора, используемые для подачи артезианской воды на ВПУ в периоды снеготаяния, для исключения снижения обменной способности фильтров и производительности ВПУ, в связи со значительным увеличением хлоридов и сульфатов в речной воде в этот период, а также в других аварийных ситуациях.

Собственные артскважины

Расположены на основной площадке. Источником является водоносный горизонт днепровско-московских флювиогляциальных отложений. Водовмещающими породами являются пески различного гранулометрического состава от мелкозернистых до гравелистых, с прослойками суглинка. Мощность водоносного горизонта изменяется от 13 до 25 м.

Поверхностный водозабор

Водохранилище Чижовское русловое, функций регулирования не выполняет. Введено в эксплуатацию в 1949 г. По проекту предназначалось для теплоэнергетики, промышленного водоснабжения и рекреации.

В состав сооружений входят земляная плотина, водосброс. На левом берегу расположены водозаборы ТЭЦ-3. В 2010 г. введена ГЭС мощностью 0,32 МВт Минскводоканала.

Эксплуатируется КУПП Минскводоканал.

Слева в водохранилище впадает Слепянская водная система.

Водоохранная зона 440-1500 м и прибрежная полоса 10-50 м.

1						
l						
l						
	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Инв. № подл

Чижовское водохранилище - источник производственного водоснабжения ТЭЦ-3 для XBO подпитки котлов и теплосети, систем охлаждения оборудования.

Таблица 3.15 – Характеристика водохранилища Чижовское

Характеристика	Ед. изм.	Величина
Площадь водосбора в створе плотины	KM ²	933
Площадь зеркала при НПУ	га	280
Длина	КМ	4,8
Средняя ширина	КМ	0,58
Максимальная глубина	M	4,7
Средняя глубина	M	2
Нормальный подпорный уровень (НПУ)	м абс.	188,1
Полный объем при НПУ	млн. м ³	5,6
Полезный объем	млн. м ³	2,3
Показатель водообмена в естественных условиях	1/год	38
Показатель водообмена после ввода Вилейско-Минской водной системы	1/год	67,8

Водозабор ТЭЦ-3 состоит из:

- двух затопленных бетонных оголовков;
- всасывающих стальных трубопроводов Ду 600 по два от каждого оголовка;
- двух береговых насосных станций № 1 и № 2, оборудованных двумя насосами 20Д-6 (Q = 460 л/с; H = 106 м) каждая;
- напорных магистральных водоводов 2Ду 300, Ду 400, Ду 500 длиной 4,3 км. Насосы, установленные в береговых насосных станциях, обеспечивают подачу технической (речной) воды на технологические нужды ТЭЦ и других предприятий Заводского района г. Минска.

Учет воды, поступающей на ТЭЦ, ведется по приборам, установленным на вводах в узлах учета.

Подрусловой водозабор

Внешний водозабор (водозабор в районе МАЗ) расположен вдоль левого берега р. Свислочь на участке плотина Чижовского водохранилища — МКАД. Введен в 1965 г. в составе подрусловых скважин, насосной 1 подъема, резервуара, насосной 2 подъема, трубопроводов. Внеплощадочные водоводы 2 Ду300-700 из стальных, чугунных и пластмассовых труб подают воду в резервуар № 3 производственной воды V = 600 м³. В настоящее время подрусловые скважины № 9,10,14 используются для подачи воды на ВПУ в периоды снеготаяния, для исключения снижения обменной способности фильтров и производительности ВПУ, в связи со значительным увеличением содержания хлоридов в речной воде в этот период, а также в других аварийных ситуациях.

Источник хоз.-питьевого и противопожарного водоснабжения

Источником питания системы хоз.-питьевого и противопожарного водоснабжения являются собственные артезианские скважины и горводопровод, обеспечивающие хоз.-питьевые нужды и пожаротушение зданий.

3.4.1.2 Приемники сточных вод

В настоящее время с площадки Минской ТЭЦ-3 отводятся:

- бытовые стоки, в количестве, равном водопотреблению ТЭЦ-3;

						_	
				ŀ			ſ
		├					Į
		ŀ			ł	ł	Ì
ı							ı
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	ı
_			_			Hann	ı

Взам. инв.

Подпись и дата

Инв. № подл.

1240-П3-АП12

- минерализованные стоки ВПУ;
- дождевые стоки сверхрасчетной интенсивности.

Существующая внутриплощадочная сеть бытовой канализации Минской ТЭЦ-3 служит для приема и отведения бытовых сточных вод, образующихся от хозяйственной и физиологической деятельности персонала, а также минерализованных сточных вод ВПУ. Внутриплощадочная сеть бытовой канализации Минской ТЭЦ-3 подключается к коммунальной хозяйственно-фекальной канализации г. Минска. Очистка сточных вод осуществляется на Минской очистной станции (МОС).

Приемником условно-чистых производственных и дождевых стоков (сверх расчетной интенсивности) является система дождевой канализации города и далее р. Свислочь.

3.4.1.3 Системы водоснабжения и водоотведения Минской ТЭЦ-3

Система технического водоснабжения

Система технического водоснабжения МТЭЦ-3 предназначена для подачи добавочной (речной) воды на нужды:

- водоподготовительных установок подпитки котлов и тепловых сетей, а также для установок подготовки воды для COO-1;
 - подпитки оборотной системы СОО-2;
 - аварийной подпитки СОО-1.

На площадке ТЭЦ подача добавочной воды осуществляется:

- от перемычки вводов № 1, 2, 3 во всасывающий колодец турбогенератора № 5 и от ввода № 4 в самотечный канал СОО-2 по двум трубопроводам диаметром 300 мм каждый, проложенным в земле с весьма усиленной изоляцией;
- от ввода № 4 к главному корпусу очереди 14 МПа по стальному трубопроводу диаметром 250 мм.

Резервный подвод добавочной (речной) воды для подпитки СОО-1 (в случае аварии на ВПУ) предусмотрен по стальным трубопроводам диаметром 200 мм, проложенным в земле от вводов № 1,2 до циркнасосных № 1 и № 2.

Системы оборотного охлаждения оборудования СОО1 и СОО2

Оборотная система СОО-1

Оборотная система №1 (СОО-1) выполнена для охлаждения основного и вспомогательного оборудования ПГУ-230. Производительность оборотной системы СОО-1 — 9175,2 м³/ч.

В состав сооружений оборотной системы СОО-1 входят:

- две градирни (№ 1,2);
- две циркуляционных насосных станции № 1, 2;
- насосная дожимной компрессорной станции (ДКС) для возврата циркводы в ССО-1;
 - напорные и сливные водоводы.

Охлажденная вода из градирни поступает в циркнасосную (аванкамеру) охлажденной воды, откуда циркнасосами подается на охлаждение основного и вспомогательного оборудования ПГУ-230. На ДКС вода подается из напорных циркводоводов главного корпуса насосами-повысителями.

На циркводоводах в главном корпусе установлен узел шарикоочистки.

1						_
	Изм.	Кол.уч	Лист	№док	Подп.,	Дата

1240-П3-АП12

Нагретая вода после охлаждения конденсатора турбины и воздухоохладителей подается на ороситель градирен, после маслоохладителей – в аванкамеру циркнасосных № 1 и 2.

Замасленные стоки после охлаждения подшипников поступают на очистные сооружения и далее отводятся в СОО-2.

Стабилизация состава воды в СОО-1 предусматривается за счет продувки в канализацию и восполнения потерь воды из системы осветленной (известковано-коагулированной) водой из XBO.

Добавочная вода подается в аванкамеру циркнасосных № 1,2.

Выполнен резервный подвод добавочной (речной) воды для подпитки СОО-1 (в случае аварии на ВПУ).

Башенные градирни № 1, 2, построенные по проекту Промэнергопроекта выпуска 1947 года, имели изначально площадь орошения 2400 м² каждая.

В связи с истечением срока службы и аварийным их состоянием в 1984 и 1986 годах была произведена их модернизация по проектам «Южтехэнерго».

В 2008 г. была выполнена реконстукция градирен № 1 и № 2 в соответствии с проектом института «Белнипиэнергопром», а также с учетом рекомендаций ИТМО НАНБ, изложенных в отчете «Комплексное обследование эффективности работы градирен (ст. № 1 и № 2) Минской ТЭЦ-3».

Согласно выполненной реконструкции градирни имеют следующие характеристики:

- площадь орошения 900 м²;
- расход циркуляционной воды 4500 м³/ч;
- температурный перепад 10 °C;
- высота воздуховодных окон 4,0 м;
- высота вытяжной башни 50,5 м;
- диаметр выходного сечения башни 24,0 м;
- ороситель двухярусный из полиэтиленовых листов двойного гофрирования общей высотой 1,05 м;
- водораспределительная система напорная из стальных труб и эвольветных сопел;

Установленный аэродинамический завихритель позволяет снизить в летний период температуру охлажденной воды на 1,5 °C.

Оборотная система № 2 (СОО-2)

Оборотная система № 2 (COO-2) выполнена для охлаждения основного и вспомогательного оборудования турбоагрегатов № 5 - 8 и мазутонасосной.

В летнем периоде охлаждение маслоохладителей турбин, газовоздухоохладителей и маслоохладителей ПЭНов может осуществляться технической водой.

В состав сооружений оборотной системы СОО-2 входят:

- три градирни Fop = 1600 м² (№ 3,4,5), построенные по типовому проекту 1H-353-59, разработанному Ленинградским отделением ТЭПа;
- самотечные подводящие железобетонные каналы от градирен к главному корпусу;
- циркуляционные насосы типа 48Д-22 4 шт., 32Д-19 4 шт., установленные в главном корпусе по два на каждую турбину;
- напорные отводящие водоводы от главного корпуса до градирен из стальных труб диаметром 1200–1600 мм.

Работа системы предусмотрена по следующей схеме:

<u> </u>	710.
Z	Изм
, a	
9	
Инв. № подл.	
1.	
Подпись и	
Š.	

Кол.уч

Лист

№док

Подп.

Дата

Взам. инв. №

- охлажденная в градирнях вода по двум самотечным каналам подается на всас циркуляционных насосов и далее напорными трубопроводами на конденсаторы, газовоздухоохладители и маслоохладители турбин и другое вспомогательное оборудование главного корпуса и мазутонасосной;
- нагретая вода после охлаждения конденсаторов турбин подается на градирни, после газовоздухоохладителей, маслоохладителей турбин и ПЭНов во всасывающие колодцы циркнасосов;
- замасленные стоки после охлаждения подшипников оборудования главного корпуса, мазутонасосной направляются на очистные сооружения и далее частично поступают в СОО-2;

Стабилизация состава воды в оборотной системе СОО-2 осуществляется за счет забора воды из системы на нужды ВПУ и восполнением потерь свежей речной водой. В конденсационном режиме — за счет восполнения потерь из системы (испарение, унос) известковано-коагулированной водой из XBO.

Объединенная система хоз.-питьевого и противопожарного водопровода В настоящее время на площадке Минской ТЭЦ-3 действует объединенная система хоз.-питьевого и противопожарного водопровода.

Система обеспечивает:

- потребителей площадки ТЭЦ питьевой водой;
- наружное и внутреннее пожаротушения зданий и сооружений площадки:
- наружное пожаротушение главного корпуса ТЭЦ;
- внутреннее пожаротушение главного корпуса ТЭЦ очереди 14 МПа.

Источниками системы служат собственные артезианские скважины и горводопровод.

Система хоз.-питьевого и противопожарного водопровода состоит из:

- резервуаров запаса воды V=2x600 м³;
- насосов хоз.-питьевых нужд марки КМ-12 (Q=90 м³/ч; H=35 м) 2 шт.;
- насосов пожарных нужд марки 1Д630-90 (Q=180 $\text{м}^3/\text{ч}$; H=89 м) 2 шт.;
- распределительных кольцевых и тупиковых сетей площадки, оборудованных пожарными гидрантами;
 - кольцевых и тупиковых сетей в зданиях и помещениях ТЭЦ.

Система канализации бытовых стоков

На ТЭЦ-3 действует система бытовой канализации с отводом бытовых и минерализованных стоков ВПУ в городской коллектор бытовой канализации.

Бытовые стоки сбрасываются через самотечный выпуск № 1 Ду 200 с узлом учета в городскую бытовую канализацию, а также через самотечный выпуск № 2 Ду 300 с узлом учета в городскую бытовую канализацию.

Через выпуск № 2 в систему бытовой канализации города отводятся так же минерализованные стоки Отведение минерализованных стоков предусмотрено в самотечном режиме.

По существующей схеме бытовые стоки ТЭЦ отводятся в одноименную систему канализации города и далее совместно со стоками города поступают на очистные сооружения полной механической и биологической очисток.

Система канализации производственно-дождевых стоков
Существующая система производственно-дождевой канализации

- дождевых стоков большой интенсивности в городской дождевой коллектор;

			<u> </u>		
Изм.	Кол.уч	Лист	№док	Подп.	Дата

обеспечивает отведение:

Взам. инв.

Подпись и дата

Инв. № подл.

1240-П3-АП12

– производственных и дождевых стоков малой (расчетной) интенсивности через колодец-делитель в пруд дождевых стоков с использованием их после очистки на подпитку оборотной системы охлаждения оборудования СОО-2.

В существующую систему канализации входят:

- самотечные сети площадки ТЭЦ с железобетонным каналом, оборудованным на выпуске с площадки ТЭЦ-3 колодцем-делителем, предназначенным для разделения потока и сброса в городской коллектор дождевого стока сверх расчетной интенсивности;
 - насосная станция производственно-дождевых стоков;
 - не фильтруемый пруд-отстойник дождевых стоков;
 - насосная станция осветленных дождевых стоков.

Стоки системы после отстоя в пруде-отстойнике и осаждения взвесей направляются на локальные очистные сооружения канализации нефтесодержащих стоков и после очистки в оборотную систему охлаждения СОО-2.

Система канализации нефтесодержащих стоков

Существующая система канализации нефтесодержащих стоков обеспечивает отведение и очистку производственных и дождевых стоков мазутного хозяйства, а также производственных нефтесодержащих стоков площадки ТЭЦ и повторное использование их в СОО-2.

В состав существующей системы входят:

- самотечные напорные сети;
- насосная станция замазученных стоков мазутного хозяйства;
- локальные очистные сооружения производительностью 200 м³/ч.

Очистка стоков на очистных сооружениях предусмотрена по схеме безнапорная флотация – напорная фильтрация на механических и адсорбция на угольных фильтрах.

Остаточное содержание нефтепродуктов по данным эксплуатации не превышает 1 мг/л.

Система канализация обмывочных вод котлов

В существующей схеме нейтрализованные обмывочные воды РВП поверхностей нагрева котлов отводятся в существующую нефильтруемую секцию шламоотвала. Осветленная вода из шламоотвала повторно используется в циклах обмывки.

Система шламоудаления продувочных вод осветлителей ВПУ

В настоящее время продувка осветлителей ВПУ подпитки котлов и теплосети направляются на вакуум-фильтры. Шлам после вакуум-фильтров отвозится автомашинами на полигон твердых бытовых отходов вместе с недопалом извести.

На площадке ТЭЦ существует также резервная гидравлическая система шламоудаления с шламоотвалом.

Система канализации химических промывок котлов

В настоящее время нейтрализованные стоки химических промывок котлов отводятся в существующий нефильтруемый шламоотвал для выдержки в нем в течение 2,5 месяцев.

После отстоя в шламоотвале стоки отводятся в промемкость мазутного хозяйства.

Проектными решениями система канализации этих стоков сохраняется, годовой объем стоков снижается.

			_			
						Γ
						l
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

MB.

Взам.

Подпись и дата

Инв. № подл.

1240-П3-АП12

Лист

3.4.2 Проектные решения

В соответствии с заданием на проектирование сооружения систем охлаждения оборудования, систем водоснабжения и водоотведения предусматриваются во втором пусковом комплексе 1-ой очереди строительства.

За исключением отдельных участков сетей производственно-дождевой канализации, отводящих поверхностные стоки от дождеприемника, установленного у дымососной площадки, и поверхностные стоки от гидронагружателя, которые предусмотрены в 3 пусковом комплексе.

Во втором пусковом комплексе с установкой нового турбоагрегата ст. № 7 предусматривается:

- сохранение источников технического водоснабжения, а также хоз.- питьевого и противопожарного водоснабжения;
 - сохранение схемы подачи добавочной воды до площадки ТЭЦ;
- сохранение схемы охлаждения, обеспечивая при этом охлаждение существующего оборудования турбоагрегатов ст. № 5, 6 и 8 на существующих градирнях № 3 и 4.
- создание новой оборотной системы охлаждения COO-2^{*} с вентиляторной градирней и циркнасосной,
 - демонтаж башенной градирни № 5 Fop = 1600 м².
- демонтаж участка самотечного канала и старых циркводоводов от турбоагрегата ст. № 7, прокладка новых циркводоводов;
- модернизация градирен № 1 и № 2 оборотной системы СОО-1 в части установки водоуловителя;
 - сохранение всех приемников сточных вод;
 - сохранение всех систем водоотведения;
- подключение зданий комплекса пождепо, циркнасосной и вентиляторной градирни к наружным сетям водопровода и канализации;
- вынос из зоны строительства проектируемых зданий и сооружений сетей водопровода и канализации;
- незначительный прирост водопотребления на бытовые нужды, связанный с увеличением штатного расписания станции и строительством закрытого гаражастоянки для автомобилей с постом мойки, и соответственно увеличение объемов водоотведения бытовых стоков;
 - сохранение расходов по водоотведению по станции в целом;
- незначительное увеличение расходов по водопотреблению подземных вод на бытовые нужды по станции в целом.

3.4.2.1 Система технического водоснабжения

В части реконструкции системы технического водоснабжения предусматривается подвод технической (речной) воды в аванкамеру циркнасосной по двум водоводам Ду 400. Подключение проектируемых водоводов добавочной воды предусматривается к существующим трубопроводам речной воды от ввода № 4 и от ввода № 3. При этом проектируемый трубопровод Ду 400 частично прокладывается по существующей трассе водовода речной воды (от подключения к вводу № 3).

Расчетные расходы добавочной (подпиточной) воды для нужд Минской ТЭЦ-3 приведены в таблице 3.16.

Взам. инв.	
Подпись и дата	
Инв. № подл.	

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Таблица 3.16 - Расходы добавочной воды

Наименование	Расходы, м ³ /ч				
потребителей	летний режим	зимний режим			
Нужды ВПУ:					
- подпитка котлов и теплосетей	492,4	420,18			
- подпитка цирксистемы	115,44	223,36			
- собственные нужды	57,84	31,76			
ИТОГО:	665,68 (15976,32)	675,3 (16207,2)			

Создание новой оборотной системы охлаждения оборудования СОО-2

Данным внесением изменений в архитектурный проект для устанавливаемого турбоагрегата ст. № 7 предусматривается создание оборотной системы охлаждения COO-2 в составе следующих сооружений:

- одной четырехсекционной вентиляторной градирни;
- циркуляционной насосной станции сблокированной помещением для электрического оборудования и шкафов управления;
 - напорных подающих и сливных циркводоводов,
 - водоводов добавочной воды.

Работа системы предусматривается по следующей схеме:

- охлажденная на градирне вода циркуляционными насосами по напорным подающим водоводам подается на охлаждение оборудования турбоагрегата ст. № 7 в главный корпус очереди 14 МПа;
- нагретая вода после охлаждения оборудования турбоагрегата ст. № 7 под остаточным напором по сливным водоводам подается на охлаждение на градирню.

Замасленные стоки из системы подаются на очистные сооружения и, после их очистки, возвращаются в СОО-2 (система оборотного охлаждения).

Стабилизация химического состава воды в системе СОО-2 предусматривается за счет восполнения потерь, связанных с испарением, уносом в секциях градирни и продувкой, добавочной речной водой и обработкой циркуляционной воды реагентами. Продувкой системы является подача воды на нужды ВПУ (в главном корпусе).

Расходы пара, поступающего в конденсаторы турбин, расходы охлаждающей воды конденсаторов турбин, теплообменного оборудования для СОО-2 и СОО-2 по 1-ой очереди приведены в таблице 3.17.

Таблица 3.17 – Расчетные расходы пара и охлаждающей воды

Взам. инв. № Наим			Расход пара, т/ч Режим			Расход охлаждающей во- ды, м ³ /ч Режим		
		Наименование оборудования	лет- ний	зим- ний	конден- сацион- ный	лет- ний	зим- ний	конден- сацион- ный
		Реконстр	руируемое оборудование					
и дата		1 Конденсатор турбины ст. № 7	0	16	330	0	0- 8000*	16000
Подпись		2 Маслоохладители турбины ст. № 7					120	120
ДОП		3 Воздухоохладители генератора ст. № 7					300	300

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Инв. № подл

4 Вспомогательное оборудование турбины ст. № 7			40	40
5 Вспомогательное оборудование установленного котла ст. № 10 (ТДМ, пробоотборники, барботеры)			30	30
Итого:		-	8490	16490

3.4.2.2 Объединенная система хоз.-питьевого и противопожарного водопровода

Расчетные расходы воды (прирост) на хозяйственно-питьевые и бытовые нужды по проекту приведены в таблице 3.18. Прирост водопотребления на бытовые нужды связан с увеличением штатного расписания станции и строительством закрытого гаража-стоянки для автомобилей с постом мойки. Закрытый гаражстоянка для автомобилей с постом мойки предусматривается с оборотной системой производительностью 1 м³/ч и пополнением оборотной системы 15 %. В таблице 1 указан общий объем пополнения оборотной системы мойки автомобилей, включая все нужды мойки автомобилей. Оборотная система для закрытого гаража-стоянки для автомобилей с постом мойки рассмотрена в технологическом разделе проекта книги 3 «Технологические решения». Расходы воды, необходимые на рукавомоечную машину 0,12 л/с, подаются от системы водоснабжения при требуемом давлении 20-40 м. Мойка рукавов производится 5 часов в сутки.

Таблица 3.18 – Прирост водопотребления на бытовые нужды, включая горячее водоснабжение

		оличество	Норма во-	Коэффициент			
Наименование		оличество бителей	допотреб-	часовой нера-	Расход		
потребителей-		· · · · · · · · · · · · · · · · · · ·		вномерности	m³/cyt	м ³ /ч	л/с
потреоителеи-	ВССТО	•	ления	вномерности	W / Cy i	/N / 4	71/ C
1 Цеха с тепловы-		смену					
•							
делением	07	00	05		0.075	0.400	0.050
< 80 кДж на	27	20	25	3	0,675	0,188	0,052
1 м ³ /ч							
2 То же > 80 кДж	5	2	45	2,5	0,225	0,028	0,008
на 1 м ³ /ч							
3 Душевые сетки	5	5	500	1	7,5	2,5	0,7
4 Пополнение							
оборотной систе-							
мы мойки автомо-							
билей, включая их					0,15	0,15	0,04
домыв					,	,	,
5 Смыв полов					0,432	0,432	0,12
6 Мойка рукавов					2,16	0,432	0,12
Итого:					10,71	3,298	0,92

Прирост водопотребления на бытовые нужды в год составит — 4,00 тыс. м³, что составляет 1,96 % от фактического водопотребления станции. Данное превышение объемов водопотребления на 1,96 % незначительно превышает разрешенное водопотребление на бытовые нужды (Комплексное природоохранное разрешение № 9 со сроком действия до 2025 г.).

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам. инв.

Подпись и дата

№ подл.

Настоящим проектом система хоз.-питьевого и противопожарного водопровода сохраняется в существующем исполнении. Дополнительно предусматривается прокладка участков сетей водопровода для подключения санитарных приборов установленных в проектируемых зданиях, для подачи воды к закрытому гаражу-стоянке для автомобилей с постом мойки, а также вынос сетей водопровода из зоны строительства дымососной площадки.

3.4.2.3 Система канализации бытовых стоков

В настоящее время система бытовой канализации обеспечивает отведение бытовых и минерализованных стоков ВПУ в городской коллектор бытовой канализации и далее на городские очистные сооружения механической и биологической очистки.

Архитектурным проектом 1 очереди строительства по системе бытовой канализации предусматривается увеличение расходов бытовых стоков, связанное с приростом численности промышленно-производственного персонала на Минской ТЭЦ-3. Увеличение расходов бытовых стоков численно равно водопотреблению на бытовые нужды. Увеличение расходов бытовых стоков на 3,066 тыс. м³ не приведет к увеличению расходов, разрешенных к сбросу в систему бытовой канализации города в соответствии с комплексным природоохранным разрешением.

Отведение бытовых стоков от существующих санитарных приборов сохраняется по существующему положению.

Дополнительно проектом предусматривается прокладка новых участков сетей для отведения стоков от санитарных приборов, устанавливаемых в проектируемых зданиях и сооружениях, а также в главном корпусе.

Существующие установки ВПУ для подпитки паровых котлов и теплосети Минской ТЭЦ-3 удовлетворяют потребность в добавочной воде нормируемого качества.

Дополнительных способов обработки и очистки воды проектом не предусматривается.

В 1-ой очереди строительства архитектурным проектом в части XBO предусматривается только замена морально и физически устаревших существующих двух осветлителей производительностью 1000 м³/ч каждый на аналогичные.

Замена осветлителей не приводит к изменению качественных и количественных характеристик минерализованных стоков, отводимых в систему бытовой канализации.

Расходы минерализованных стоков по настоящему проекту составляют:

- 57,84 м³/ч летний период;
- 31.76 м³/ч зимний период.

Расходы минерализованных стоков, отводимых в городскую канализацию, не превышают расходов стоков по существующему положению и находятся пределах стоков, разрешенных к отведению, установленных комплексным природоохранным разрешением.

С реконструкцией станции очереди 14 МПа схема отведения стоков в систему бытовой канализации станции и далее в одноименную систему канализации города сохраняется по существующему положению.

,						
Инв. № подл.		_			_	
S.						
표						
7	Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подпись и дата

1240-П3-АП12

3.4.2.4 Система канализации производственно-дождевых стоков

Существующая система производственно-дождевой канализации обеспечивает отведение:

- дождевых стоков большой интенсивности в городской дождевой коллектор;
- производственных и дождевых стоков малой (расчетной) интенсивности через колодец-делитель в пруд дождевых стоков с использованием их после очистки на подпитку оборотной системы охлаждения оборудования СОО-2.

По решениям проекта в систему канализации отводятся стоки по аналогии с существующим положением ТЭЦ:

- замасленные стоки главного корпуса очереди 14 МПа, включая стоки от барботеров;
 - дождевые стоки с расширяемой части кровли главного корпуса;

Расход стоков

м³/сут

- дождевые стоки с проектируемых дорог.

 $M^{3}/4$

Наименование

стоков

Взам. инв.

Подпись и дата

№ подл.

NHB.

Изм.

Кол.уч Лист

№док

Подп.

Дата

Количественная и качественная характеристики стоков приведены в таблице 3.19.

Таблица 3.19 - Расходы и состав стоков, отводимых в систему канализации

тыс. м³/

год

Характерис-

тика потока

по основным

показателям

1240-П3-АП12

Режим

отведе-

ния

Приемник

стоков

Лист

1 Главный корпус 1.1 Очередь 14 МПа включая стоки от барботеров	25	600	175	Содержание нефтепродук- тов до 50 мг/л температура 40 °C	Посто- янно	После очистки в оборотную систему СОО-2 (содержание нефтепродуктов 1 мг/л)
2 Продувка оборотной системы СОО1 - лето - зима	9,84 3,55	236,2 84,5	46,9	См. таблицу 9	Посто- янно	Система ливне вой канализации
3 Дождевой сток с расширяемой части главного корпуса	27,6 л/с			Взвешенные вещества до 20 мг/л; БПК ₂₀ 10 мг/л; ХПК 80 мг/л	При дожде	После очистки в оборотную систему СОО-2 (содержание нефтепродуктов 1 мг/л)
4 Смыв полов в помещении бокса автомобилей	0,12 л/с	0,432	0,158	Взвешенные вещества до 700 мг/л; нефтепродук- ты до 40 мг/л температура 40 °C	Перио- дически	После очистки в оборотную систему СОО-2 (содержание нефтепродуктов 1 мг/л)
5 Стоки рукавомоеч- ной машины	0,12 л/с	2,16	0,721	Взвешенные вещества до 700 мг/л; тем-	Перио- дически	После очистки в оборотную систему СОО-2

. '	Pac	ход сто	КОВ	Характерис-	Режим	
Наименование			тыс. м ³ /	тика потока	отведе-	Приемник
стоков	м ³ /ч	м ³ /сут	год	по основным	ния	стоков
				показателям		
				пература 40 °C		
6 Дождевой сток с				Взвешенные	При	После очистки
кровли пождепо	6,84			вещества до	дожде	в оборотную
	л/с			20 мг/л;	'	систему СОО-2
				БПК ₂₀ 10 мг/л;		(содержание
				ХПК 80 мг/л		нефтепродук-
-						тов 1 мг/л)
7 Дождевой сток с				Взвешенные	При	После очистки
территории градирен	80			вещества до	дожде	в оборотную
	л/с			400 мг/л;		систему СОО-2
				БПК ₂₀ 20 мг/л;		(содержание
				XПК 100 мг/л		нефтепродук-
				нефтепро		тов 1 мг/л)
				дукты 20мг/л		.
7 Дождевой сток с	0.5			Взвешенные	При	После очистки
территории пождепо	65			вещества до	дожде	в оборотную
	л/с		1	400 мг/л;		систему СОО-2
				БПК ₂₀ 20 мг/л;		(содержание
				XПК 100 мг/л		нефтепродук-
				нефтепро		тов 1 мг/л)
	25 272	000 00	222 000	дукты 20мг/л		
- лето	35,272		222,088			
зима	28,982	686,66				

Качество стоков продувки оборотной системы по настоящему проекту приведено в таблице 3.20.

Таблица 3.20 – Качество стоков продувки оборотной системы

	C PLANTA III I	Кол	ичество
Показатели качества сточных вод	Единицы измерения	Зимний режим	Летний режим
Жесткость общая	мг-экв/л	10,14	13,55
Жесткость карбонатная	мг-экв/л	1,28	2,0
Кальций	мг/л	162,47	204,45
Магний	мг/л	24,67	40,66
Натрий	мг/л	252,19	152,55
Бикарбонаты	мг/л	78,13	122,31
Карбонаты	мг/л	1,81	0,00
сульфаты	мг/л	315,93	487,05
Хлориды	мг/л	. 450	269,56
Щелочность	мг-экв/л	1,28	2,00

Архитектурным проектом не предусматривается дополнительных расходов производственных и дождевых стоков в систему производственно-дождевой канализации, так как:

- проектом предусмотрена замена турбоагрегата № 7 на новый турбоагрегат;
- проектируемое оборудование устанавливается на существующей площадке Минской ТЭЦ-3 без дополнительных водосборных площадей.

Система сохраняется в существующем исполнении без изменений.

ı							Γ
ı							ł
		ŀ					ı
	Изм.	Кол.уч	Лист	№док	Подп.	Дата	1

Взам. инв. №

Подпись и дата

Инв. № подл

нв. № подл. Подпись и дата Взам. инв. №

Дополнительно проектом предусматривается прокладка участков сетей канализации для отведения поверхностных стоков ТЭЦ в систему производственно-дождевой канализации с повторным использованием очищенных стоков.

Пождело. Мойка автомобилей с оборотной системой водоочистки

Настоящим проектом предусматривается в комплексе сооружений пождепо установка мойки автомобилей. Мойка автомобилей расположена в здании "Блок вспомогательных сооружений" между осями 2 – 4 и A – B.

Мойка состоит из следующих помещений:

- водоочистки, категория пожароопасности B3, по ПУЭ П-I;
- моечного, категория пожароопасности Д;
- венткамеры, категория пожароопасности Д.

Мойка предназначена для наружной мойки пожарных автомобилей. Пропускная способность мойки — 1 грузовая машина в час. Режим работы — по необходимости, количество рабочих мест — 1 человек.

Очистка и мойка машин в значительной степени улучшает качество технического обслуживания, ремонта и внешний вид пожарных машин.

Машины на мойку поступают своим ходом. Перед заездом в здание, машины очищаются от грязи, снега, наледи.

Мойка машин осуществляется, в основном, холодной водой питьевого качества от системы хоз.питьевого и противопожарного водопровода с применением чистящих средств и умягчителей с помощью аппаратов высокого давления, которые установлены в очистном отделении. От аппарата высокого давления вода через шланги поступает на пистолет высокого давления, через которые и происходит сам процесс мойки. Удлинительная трубка с возможностью поворота на 360° под давлением длиной 2050 мм с эргономичной рукояткой дает возможность струей моющего раствора доставать до самого верха автомобиля. Аппарат высокого давления имеет возможность подогревать воду (дизельный подогрев). Расход топлива 6,9 кг/ч, объем топливного бака аппарата 25 литров. Ополаскивание автомобилей осуществляется чистой водой.

В мойке запроектирована оборотная система очистки УКОС-АВТО.

В состав УКОС-АВТО входят размещенные в одном корпусе гидроциклоносветлитель, контейнер для осадка, электрореактор, контактный осветлитель, адсорбер, промыватель контактного осветлителя, емкость для очищенной воды и насосы очищенной и грязной воды.

Предлагаемый комплекс имеет 4 ступени очистки сточных вод. На первой ступени в гидроциклоне-осветлителе вода очищается от механических примесей и не эмульгированных нефтепродуктов в виде пленки.

После механической очистки предусмотрена обработка сточных вод в электрореакторе со стальными или алюминиевыми электродами, где происходит коагуляция микрочастиц примесей и эмульгированных нефтепродуктов.

Затем сточные воды проходят контактное осветление в слое синтетического материала - плавающей загрузке при механическом задержании коагулированных примесей.

Глубокая финишная доочистка сточных вод осуществляется адсорбцией, в результате которой происходит поглощение примесей из очищаемой воды высокопористым гранулированным материалом.

Очистка сточных вод обеспечивается применением комбинированной безреагентной технологии, включающей механическую, электрохимическую и физи-

I						
I						
ľ	Изм.	Кол.уч	Лист	№док	Подп.	Дата

ко-химическую очистку. Качество очищенной воды позволяет использовать ее в системе оборотного водоснабжения мойки.

Производителем оборудования предусматривается установка над чащей "реактора", поставляемого комплектно, вытяжного зонта с воздуховодом для удаления образующегося в процессе работы оборудования водорода. Объем образующегося при работе оборудования водорода составляет 0,013 м³/час, фильтроцикл оборудования составляет до 8 часов (данные значения предоставлены производителем оборудования). В виду того что водород значительно легче воздуха, а удаляющий водород воздуховод выполняется строго вертикально вверх, то образование взрывоопасной смеси водорода с воздухом происходить не может в любой ситуации.

Расчёт категории помещения очистного сооружения с учетом выделения водорода будет приложен.

Производительность установки: 1 $\text{м}^3/\text{ч}$, пополнение оборотной системы — 0,15 $\text{м}^3/\text{сутки}$ (давлением 0,2-0,4 МПа). Пополнение производится персоналом вручную, по мере снижения уровня воды в расходном баке. Плановый сброс из мойки 1 м^3 очищенной воды в канализацию периодически до 2 раз в месяц. Данный сброс производится в период чистки электродов и извлечения сухого осадка из очистного оборудования.

Принципиальная схема очистки приведена на рисунке 3.1.

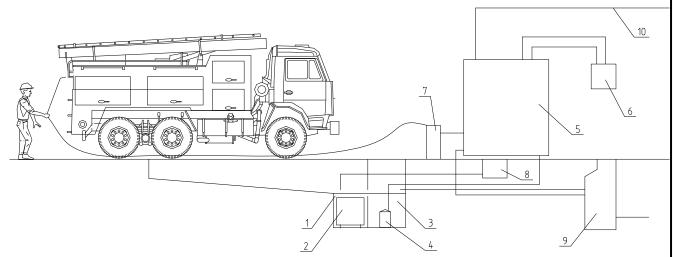


Рисунок 3.1 – Схема очистки автомобилей

где 1, 3 - приемный колодец с двумя сообщающимися секциями, приямком 8 и колодцем канализации 9, размещенные в секциях колодец-зона 2 для сбора твердых загрязнений и погружной самовсасывающий насос 4, установленный в удобном месте силовой блок питания 6, трубопроводы подачи очищенной воды к аппаратам высокого давления 7 и подвода подпиточной воды питьевого качества 10, а также собственно устройство 5 комплексной очистки стоков (УКОС-АВТО).

В состав УКОС-АВТО входят размещенные в одном корпусе гидроциклоносветлитель, контейнер для осадка, электрореактор, контактный осветлитель, адсорбер, промыватель контактного осветлителя, емкость для очищенной воды и насосы очищенной и грязной воды.

В данном проекте очистное сооружение системы оборотной воды мойки выполнено внутри производственного здания.

Согласно п. 6.11 в составе производственного помещения здания допускается предусматривать отдельные помещения для размещения оборудования за-

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

ИНВ

Взам.

Подпись и дата

№ подл.

крытого типа (без открытой поверхности) для очистки сточных вод от мойки ТС производительностью не более 30 л/с.

Размещение отстойника и его размеры выполнены на основании рекомендации завода-изготовителя по размещению трапов и отстойника.

В чертежах 1240-АП-ТП12 л. 4 представлен план с расположением оборудования и спецификация.

Характеристики загрязнения сточных вод после мойки автомобилей принимаются согласно таблицы 7 по ТКП 45-3.02-241-2011 для категории ТС III (грузовой автомобиль).

Соответственно:

- 1) взвешенные вещества:
 - не более 1300-3100 мг/л;
- 2) нефтепродукты:
 - не более 50-100 мг/л;
- 3) pH:
 - -6.5-8.0:
- 4) содержание солей в зимний период:
 - не более 1850 мг/л.

Характеристика очищенных вод после водоочистного комплекса составляет (концентрация в очищенной воде, мг/л):

- концентрация взвешенных веществ в очищенной воде 1-5 мг/л.
- концентрация нефтепродуктов в очищенной воде 0,5-3 мг/л.

Технологическое оборудование, позволяющее осуществлять мойку, и оборотная система в данном проекте представлены как аналог.

В помещении бокса автомобилей 1 раз в день должна осуществляться влажная уборка помещений (0,12 л/с, давлением 0,2-0,4 МПа). Вода удаляется через приямок (возможные загрязнения: до 700 мг/л взвешенных веществ, до 40 мг/л нефтепродуктов, температура 40 °C).

3.4.3 Водный баланс

Баланс потребления воды на производственные нужды ТЭЦ-3 для проектируемого оборудования представлен в таблице 3.21. Водопотребление не превышает разрешенный комплексным природоохранным разрешением № 9 забор речной воды на технологические нужды, равный 6339 тыс. м³/ год.

3.4.4 Мероприятия по рациональному использованию воды

С целью экономии технической воды проектом предусмотрены:

- строительство оборотной системы СОО-2*для охлаждения оборудования, устанавливаемого по настоящему проекту;
- отведение аварийного слива трансформаторного и турбинного масла в подземные железобетонные нефильтруемые емкости;
- очистка производственных стоков от смыва полов в помещении бокса автомобилей на очистных сооружениях и повторное их использование в цикле ТЭЦ;
- реконструкция оборотной системы COO-2 в части демонтажа градирни № 5, строительства циркнасосной на месте градирни № 5, демонтажа циркнасосов

Ŀ	
Подпись и дата	
Инв. № подл.	

внутри главного корпуса, самотечного канала и существующих циркводоводов, прокладка новых циркводоводов;

- модернизация градирен СОО-1 в части установки водоуловителей;
- отведение стоков мойки автомобилей пожарного депо на проектируемые очистные сооружения;
 - благоустройство территории.

Прямого воздействия на водозаборы питьевой воды г. Минска ТЭЦ-3 не оказывает, поскольку потребляет воду через систему горводопровода.

Загрязнение подземных вод может происходить в первую очередь на промплощадке ТЭЦ, в необорудованных местах хранения промышленных отходов, в районах очистных сооружений и утечек из сетей канализации. Загрязнение подземных вод предотвращается сбросом стоков через закрытые канализационные сети.

На р. Свислочь и Чижовское водохранилище ТЭЦ-3 влияет посредством поверхностного водозабора Минскводоканала.

На сооружения биологической очистки г. Минска ТЭЦ-3 воздействует через сети и подкачивающие канализационные насосные станции станционной и городской системы бытовой канализации.

На р. Свислочь ТЭЦ-3 влияет через дождевой коллектор Горремавтодор.

Поверхностные стоки собираются со всех твердых поверхностей площадки ТЭЦ и отводятся после очистки на производственные нужды ТЭЦ-3, распространение загрязнений на прилегающую территорию не происходит.

Производственно-дождевые стоки площадки ТЭЦ направляются в городской ливневой коллектор только при сверхрасчетных ливнях (перелив).

При эксплуатации и при реализации водоохранных мероприятий дополнительного загрязнения подземных вод не прогнозируется.

					·	
Взам. инв. №			ţ			
Подпись и дата						
подл.			1	 , 		
Инв. № подл.	Man Konya	Пист	None	 -	1240-ПЗ-АП12	<u></u>

Кол.уч Лист №док

Лист

	ı	.						
	Таблица 3.2	1 - Баланс водопотр					Economical	
		именование гребителей	водопот Техническая вода (речная)	ребление С повторного использования	В канали- зацию	на повторное использование	Безвозвратн Подпитка котлов и теп- ловых сетей	испарения и унос в градирнях
	Технологиче 1 Нужды ХВ	еские нужды ТЭЦ: О:						
	1.1 Подпитк сетей	а котлов и тепловых	<u>492,4</u> 420,18				<u>492,4</u> 420,18	
	1.2 Восполн ротных сист	ение потерь в обо- емах	<u>115,44</u> 223,36					<u>115,44</u> 223,36
	1.4 Собстве	нные нужды ХВО	<u>57,84</u> 31,76	<u>17,5</u> 31,6	<u>57,84</u> 31,76	17, <u>5</u> 31,6		
		м ³ /ч	665,68 675,3	<u>17,5</u> 31,6	<u>57,84</u> 31,76	17,5 31,6	<u>492,4</u> 420,18	115,44 223,36
124	Итого:	м ³ /сут	<u>15976,32</u> 16207,2	<u>420</u> 758,4	<u>1388,16</u> 762,24	420 758,4	<u>11817,6</u> 10084,32	<u>2770</u> 5360,64
익		тыс.м ³ /год	5873,49	215,06	392,45	215,06	3997,10	1483,94
1240-ПЗ-АП12		ия еле расходы приведе сов использования - 8		ежима, а в знаме	нателе - для :	вимнего.		

Пист

3.5 Воздействие на окружающую среду при обращении с отходами

Отходы - вещества или предметы, образующиеся в процессе осуществления хозяйственной деятельности, жизнедеятельности человека и не имеющие определенного предназначения по месту их образования либо утратившие полностью или частично свои потребительские свойства.

Возможная степень воздействия отходов на окружающую природную среду зависит от количественных и качественных характеристик отходов (физико-химические свойства, класс опасности, количество).

Актуальным при строительстве и эксплуатации объекта является проблема удаления и складирования, а в дальнейшем использование и захоронение отходов производства и потребления.

Система обращения с отходами должна строиться с учетом выполнения требований природоохранного законодательства (Закон Республики Беларусь «Об обращении с отходами»), а также следующих базовых принципов:

- приоритетность использования отходов по отношению к их обезвреживанию или захоронению при условии соблюдения требований законодательства об охране окружающей среды и с учетом экономической эффективности;
 - приоритетность обезвреживания отходов по отношению к их захоронению.

При проведении строительно-монтажных работ (по объектам-аналогам) возможно образование отходов строительства, таких как:

- сучья, ветки, вершины (код 1730200, неопасные);
- отходы корчевания пней (код 1730300, неопасные);
- бой бетонных изделий (код 3142707, неопасные);
- бой железобетонных изделий (код 3142708, неопасные);
- лом стальной несортированный (код 3511008; неопасные);
- лом алюминия несортированный (код 3530405, неопасные);
- металлические конструкции и детали из железа и стали поврежденные (код 3511500, неопасные).

Поскольку большинство видов отходов, образующихся в период строительства, являются инертными по отношению к компонентам окружающей среды, их негативное влияние будет проявляться в основном в захламлении территории. Поэтому в этот период основное внимание следует уделять своевременному их вывозу и утилизации. Учитывая, что строительные работы проводятся последовательно, то общее количество одновременно хранящихся отходов будет невелико.

Временно накапливаемые на территории промплощадки предприятия отходы при принятых условиях их хранения не имеют выделений загрязняющих веществ в атмосферный воздух и не оказывают на него вредного воздействия.

Все образующиеся отходы строительства, учитывая приоритетность использования отходов по отношению к их захоронению (Закон РБ от 20.07.2007 № 271-3 «Объекты по использованию данных видов отходов в соответствии с реестром Минприроды, действующим на момент реализации проектных решений.

В процессе эксплуатации объекта по проектным решениям новых видов отходов производства не образуется.

При рекомендуемом обращении с отходами и правильном их хранении предотвращается загрязнение окружающей среды продуктами распада исключается попадание загрязняющих веществ в почву, подземные и поверхностные воды. Соблюдение правил сбора, хранения и перевозки отходов обеспечивает безопасную для жизнедеятельности людей эксплуатацию объекта.

١			обесі	печив	вает б	безопас	ну
	Инв. № подл.		ľ		.		<u>.</u>
l	8 <u>H</u>			•			<u>†</u>
l	<u> </u>	Изм.	Кол.уч	Лист	№док	Подп.	Д

Взам, инв. №

1240-ПЗ-АП12

Лист

Основное воздействие на геологическую среду и почвенный покров будет происходить в период строительства. Воздействие на земельные ресурсы и почвенный покров в результате строительства может быть связано с отчуждением земельных ресурсов под строительство, уплотнением почвы, возможным загрязнением почв и грунтов хозяйственно-бытовыми стоками и твердыми бытовыми отходами, перемещением плодородного слоя почвы во временные отвалы, привнесением загрязняющих веществ строительной техникой, транспортными средствами и отдельными технологическими процессами.

В основном, все работы по проекту будут осуществляться в границах территории Минской ТЭЦ-3 (существующий землеотвод), за исключением участка замены трубопроводов сетевой воды за пределами территории ТЭЦ-3. При выполнении строительных работ в местах установки дополнительных опор с фундаментами под трубопроводы сетевой воды требуется дополнительный отвод земель в постоянное пользование.

Согласно проектным решениям предусматривается дополнительный землеотвод:

- в постоянное пользование 0,0344 га земель населенных пунктов (для установки дополнительных опор под трубопроводы сетевой воды).

Самым распространенным видом нарушения почвенного покрова при строительстве будет его вытаптывание, уплотнение (сминание). Воздействие данного типа невозможно исключить при любых строительных работах.

Земляные работы при устройстве фундаментов, прокладке инженерных сетей связаны с выемкой земляных масс.

Срезка растительного грунта на площадках строительства не предусматривается, так как мощность растительного слоя меньше 0,1 м (согласно инженерногеологическим изысканиям), за исключением прокладки инженерных сетей.

Проектными решениями при прокладке инженерных сетей производится срезка растительного грунта высотой 0,15 м на площади 6750 м 2 (объем грунта 1012,5 м 3). После окончания строительных работ весь срезанный грунт будет использован на восстановление нарушенного газона обыкновенного на площади 6750 м 2 с внесением растительного грунта высотой 0,15 м.

Негативные воздействия на почвенный покров во время строительства в значительной степени определяются конструктивной схемой самого строительства, технологией сооружения, условиями местности, временем года. Таким образом, степень негативного влияния на окружающую природную среду, связанного с нарушением почвенного покрова при планируемых земляных работах, определяется в первую очередь качеством выполняемых работ в точном соответствии с разработанными технологическими схемами, а также своевременными действиями по восстановлению.

Для минимизации негативного воздействия на почвенный покров в период строительства предусматривается:

- обязательное соблюдение границ территории, отведенной под строительство;
- складирование изъятого минерального грунта на свободных площадях в границах отвода с использованием его впоследствии для нужд, связанных со

Подпис	
нв. № подл.	

Изм.

Кол.уч

Лист

№док

Подп.

Дата

Взам.

строительством объекта: при обратной засыпке траншей и подземной части фундаментов, формировании пешеходной и проезжей части и т.д.;

- движение строительной техники только по существующим автомобильным проездам;
- запрещение эксплуатации строительных машин, имеющих течи горючесмазочных материалов;
- выделение специально отведенных площадок и мест для складирования строительных материалов;
- регулярный вывоз отходов по мере их накопления для уменьшения возможности загрязнения и захламления прилегающей территории;
- организация контроля за обращением строительных отходов в период проведения строительных работ.

Используя результаты оценки воздействия при строительстве аналогичных объектов можно прогнозировать, что заметного воздействия на геологическую среду и почвенный покров на этапе строительства не ожидается. Масштаб воздействия характеризуется как *покальный* (в границах территории строительства).

Для минимизации негативного воздействия на почвенный покров после выполнения строительных работ производится освобождение площадки от строительного мусора, проведение планировочных работ с засыпкой образовавшихся борозд, рытвин, ям и других неровностей с использованием изъятого грунта, выполнение комплекса восстановительных мероприятий, а также благоустройство и озеленение территории.

На этапе строительства и эксплуатации объекта одним из видов возможного негативного воздействия на почвенный покров может быть неправильное обращение с образующимися отходами. Политика в области обращения с отходами должна обеспечивать соблюдение правил их хранения, а также своевременный вывоз накопившихся отходов производства и потребления.

При эксплуатации объекта основным видом возможного отрицательного воздействия будет являться загрязнение почвы, связанное с выбросами загрязняющих веществ в атмосферный воздух и их последующим осаждением. Загрязняющие вещества выводятся из атмосферы за счет процессов как сухого, так и мокрого осаждения и могут оказывать воздействие на почву - в особенности на химию и биологию.

Следует отметить, что любая почва обладает способностью к самоочищению, которая является фактором буферного действия, снижающим антропогенное загрязняющее воздействие на другие компоненты окружающей природной среды (поверхностные и подземные воды, растительность и живые организмы). Законы самоочищения почв и трансформации вещества в них определяются факторами почвообразования (соотношением тепла и влаги, физико-химическими свойствами почвообразующих пород, положением в рельефе, характером растительности и др.), а также количеством и токсичностью загрязняющих веществ, поступающих в почву.

Учитывая, что загрязнение атмосферного воздуха, обусловленное выбросами Минской ТЭЦ-3, после реализации проектных решений по всем ингредиентам и группам суммации ниже ПДК в атмосферном воздухе можно прогнозировать, что вероятность ощутимых негативных последствий воздействия на почвы не прогнозируется.

Кроме того, суммарные выбросы загрязняющих веществ (т/год) по проектным решениям от Минской ТЭЦ-3 снижаются относительно существующего состояния.

1	подпись и дата
7	инв. № подл.

Кол.уч Лист №док

Подп.

Дата

Взам. инв. №

3.7 Воздействие на растительный и животный мир. Прогноз и оценка изменения состояния объектов растительного и животного мира

3.7.1 Воздействие на растительность

Все предусмотренные проектные решения по реконструкции Минской ТЭЦ-3 выполняются в границах существующей промплощадки ТЭЦ, за исключением строительства дополнительных опор с фундаментами под трубопроводы сетевой воды. Под строительство дополнительных опор требуется дополнительный отвод земли в количестве 0,034 га (земли населенных пунктов).

Первоначальное строительство ТЭЦ и прилегающих к ТЭЦ объектов уже оказало влияние на животный и растительный мир. Здесь сформировался характерный биогеоценоз.

Существующая территория Минской ТЭЦ-3 представляет собой типовую схему промплощадки, которая застроена необходимыми для производственной деятельности зданиями и сооружениями, свободные участки территории покрыты твердыми асфальто-бетонными покрытиями и частично отведены под обязательное озеленение (отдельно растущие деревья, кустарниковая растительность, газоны и цветники).

Мест произрастания особо охраняемых видов растений на промплощадке или на разумном удалении от нее нет.

Прямое воздействие на растительность связано с уничтожением объектов растительного мира в зоне строительства:

- а) 1 пусковой комплекс (район проектируемого пождепо):
 - вырубка 9 деревьев, двух кустарников и поросли на площади 25 м²;
- а) 3 пусковой комплекс (район градирен):
 - вырубка 29 деревьев и поросли на площади 33 м²;
- удаление и восстановление газона обыкновенного на площади 6750 м² при прокладке инженерных сетей.

Взамен удаляемых объектов растительного мира согласно Положению о порядке определения условий осуществления компенсационных мероприятий, утвержденного постановлением Совета Министров РБ от 25 октября 2011 г. № 1426 (в редакции постановления Совета Министров Республики Беларусь 26.04.2019 № 265) предусмотрены компенсационные мероприятия (посадки) в границах территории ТЭЦ-3 и на территории Заводского района.

В период эксплуатации ТЭЦ-3 воздействие на растительность связано с поступлением в атмосферный воздух и осаждением загрязняющих веществ, содержащихся в продуктах сгорания топлива.

Действие загрязняющих веществ на растения в основном зависит от:

- вида загрязняющих веществ;
- концентрации загрязняющих веществ;
- длительности воздействия;
- относительной восприимчивости видов растений или отдельных растений к загрязняющим веществам;
- стадии физиологического развития, в которой находится растение или его часть в период воздействия.

Наиболее существенными факторами являются концентрация загрязняющих веществ и длительность их воздействия. Надо отметить, что влияние на растительность загрязняющих веществ — процесс окончательно неизученный.

-	\vdash					
Изм.	Кол.уч	Лист	№док	Подп.	Дата	

MHB. No

Взам.

Подпись и дата

1240-П3-АП12

Оценка воздействия антропогенной деятельности на растительный покров затруднена тем, что отсутствуют какие-либо определенные количественные нормативы состояния растительности.

Характеристика влияния загрязняющих веществ на растения

Отрицательное влияние на растения могут оказывать практически все выбросы, однако наибольшего внимания заслуживают так называемые приоритетные вещества: диоксид серы, оксиды азота, мелкие частицы тяжелых металлов (микроэлементы) и оксид углерода.

Повреждения растительности наступают, когда содержание загрязняющих веществ превышает критический уровень адаптации и устойчивости растений. Проявляются они, в первую очередь, на биохимическом уровне (затрагивают фотосинтез, дыхание, биосинтез жиров и белков и т.д.). Затем распространяются на ультраструктурный (дезорганизация клеточных мембран) и клеточный (деструкция ядра, клеточных стенок, мезофилла) уровни. И уже после этого развиваются видимые симптомы повреждения (хлорозы и некрозы тканей листа).

Установлено, что для растений более токсичны кислые газы и пары, нарушающие автотрофный характер метаболизма, а для животных - соединения, действующие на дыхательную, сердечную и нервную системы. Последнее и дало основание некоторым исследователям /2/ считать допустимые нормы загрязнения воздуха для растений более низкими, чем для человека. Токсичные свойства кислых газов, изученные различными авторами /2,4/, позволяют расположить их по мере убывания токсичности в следующий ряд: S0₂, N0₂, CO.

По данным /11/ NO_2 в 1,5 - 5 раза менее токсичен для растений, чем SO_2 , причем при длительном воздействии безвредной является концентрация NO_2 , составляющая 0,35 мг/м³ и 0,8 мг/м³ (при газации в течение 30 мин.). Для диоксида азота критическими для поражения растений считаются среднегодовые концентрации 0,1 мг/м³ и среднесуточное значение 0,25 мг/м³.

Каждый вид растений имеет свою собственную чувствительность к каждому из загрязнений, каждый сорт и даже каждое индивидуальное растение имеет различную генетическую устойчивость. Кроме того, чувствительность изменяется по мере роста и развития растений, а также зависит от времени суток и года, параметров окружающей среды и продолжительности воздействия.

Количество осадков, влажность, температура, состояние почвы, включая наличие питательных веществ, освещение и многие другие параметры изменяют реакцию растений по отношению к загрязнениям. Из этого следует, что пороговая концентрация - минимальная концентрация, при воздействии которой возникают изменения, выходящие за пределы физиологических реакций, никогда не может быть выражена каким-либо одним значением: обычно ее рассматривают как интервал концентраций, учитывая, что точное пороговое значение зависит от взаимодействия различных параметров окружающей среды.

Лиственные и вечнозеленые растения меньше страдают в состоянии покоя (в зимний период), что объясняется уменьшением газообмена.

Известно, что в естественных условиях, вследствие многочисленных причин, концентрации химических загрязнений значительно изменяются во времени, что обуславливает прерывистый характер их воздействия. Экспериментально установлено, что при прерывистом воздействии наблюдается ослабление влияния токсиканта, что может быть связано с уменьшением его содержания в растении во время свободного от загрязнителя периода.

	Изм.	Кол.уч	Лист	№док	Подп.	Дата
Инв. № подл.						
. пдог						
_						

MHB.

Взам.

Чувствительность растений к загрязнению атмосферы количественно и качественно отличается от чувствительности человека. В связи с этим во многих странах разработаны стандарты для защиты растений.

Вещества, загрязняющие атмосферу, причиняли значительный вред растительному миру в течение многих десятилетий. Для того, чтобы сохранить в нормальном состоянии наши природные экосистемы и сельскохозяйственные объекты, необходимо осуществлять постоянный строгий контроль, обеспечивающий предотвращение роста загрязнения атмосферы.

В таблице 3.22 приводятся данные (обобщение ряда работ), где показаны границы концентрации загрязнений, вызывающие незначительные видимые повреждения.

Таблица 3.22 - Допустимые нормы содержания SO₂ и NO₂ в воздухе

	THE PROTEININ			
Чувствительность	Средняя за 40 минут	Средняя за период роста		
растений	концентрация при разовом	растений концентрация		
растении	воздействии, мг/м ³	(7 месяцев) в воздухе, мг/м ³		
	Диоксид	ц азота		
Чувствительные	6,0	0,35		
	Диоксид серы			
Очень чувствительные	0,25	0,05		
Чувствительные	0,40	0,08		
Устойчивые	0,60	0,12		

Следует отметить, что диапазон абсолютных различий наиболее и наименее чувствительных к загрязнению древесных растений варьирует в пределах 10-кратной величины.

В странах СНГ общепринятых ПДК для растительности пока нет. Впервые в природоохранной практике необходимость применения экологических нормативов качества атмосферного воздуха возникла с целью предотвращения гибели деревьев в музее-усадьбе «Ясная Поляна». В 1984 году профессором Николаевским В.С были разработаны и согласованы «Временные нормативы предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе (для 13-ти загрязняющих веществ), оказывающих вредное воздействие на лесные насаждения в районе музея-усадьбы Ясная поляна» /18/, в том числе для:

- оксидов азота максимальная разовая 0,4 мг/м³;
- диоксида серы максимальная разовая 0,3 мг/м³;
- оксида углерода максимальная разовая 3,0 мг/м³.

В Республике Беларусь разработаны нормативы экологически безопасных концентраций загрязняющих веществ в атмосферном воздухе особо охраняемых природных территорий, отдельных природных комплексов и объектов особо охраняемых природных территорий, а также природных территорий, подлежащих специальной охране /33/.

Анализ уровня загрязнения атмосферного воздуха в зоне воздействия Минской ТЭЦ-3, которая по расчетам охватывает территорию около 9,2 км вокруг дымовых труб, показал, что при реализации планируемой деятельности максимальное загрязнение основными фитотоксичными веществами характеризуется следующими величинами:

- 1 вариант: по диоксиду азота 0,105 мг/м³; по диоксиду серы 0,025 мг/м³;
- 2 вариант: по диоксиду азота 0,115 мг/м³; по диоксиду серы 0,12 мг/м³;
- 3 вариант: по диоксиду азота 0,1075 мг/м³; по диоксиду серы 0,1 мг/м³.

ı							
							Γ
	_						ı
							1
							ı
	Изм	Кол.уч	Пист	Noner	Попп	Пото	1
	MIGINI.	KOJI.Y4	JINCI	издок	Подп.	Дата	ı

Взам.

Подпись и дата

Ne подл

Величины максимальных приземных концентраций загрязняющих веществ, обусловленные выбросами рассматриваемого объекта, ниже ПДК в атмосферном воздухе, ниже величин, рассматриваемых в литературе как допустимые даже для очень чувствительных растений и ниже нормативов экологически безопасных концентраций загрязняющих веществ в атмосферном воздухе особо охраняемых природных территорий и природных территорий, подлежащих специальной охране (таблица 3.23).

Следовательно, воздействие ТЭЦ-3 на растительный мир можно охарактеризовать как незначительное: изменения в окружающей среде не превышают существующие пределы природной изменчивости.

3.7.2 Воздействия на животный мир

Территория ТЭЦ-3 не является ключевым репродуктивным участком, через нее не проходят основные пути миграции каких-либо видов животных, здесь отсутствуют гнездовья редких и исчезающих птиц, местообитаний особо охраняемых видов животных на промплощадке или на разумном удалении от нее нет.

Как уже отмечалось, при реконструкции Минской ТЭЦ-3 все работы выполняются в границах существующей промплощадки ТЭЦ, за исключением строительства дополнительных опор с фундаментами под трубопроводы сетевой воды. Под строительство дополнительных опор требуется дополнительный отвод земли в количестве 0,034 га (земли населенных пунктов). Однако воздействие на животных, связанное с отчуждением земель, практически отсутствует.

Возможными неблагоприятными последствиями воздействия объекта на животный мир территории могут быть пространственные перемещения части чувствительных видов. Среди наземных позвоночных птицы наиболее быстро реагируют на изменение условий существования, что связано с их высокой подвижностью. Поэтому в пределах города они легко перемещаются на другие участки. Высота полета перелетных птиц является достаточной для того, чтобы избежать контактов с трубами и коммуникациями объекта. Таким образом, негативное воздействие на пути перелетных птиц практически отсутствует.

В соответствии с расчетными данными, максимальные приземные концентрации, обусловленные ТЭЦ-3, ниже соответствующих ПДК в атмосферном воздухе, что свидетельствует об отсутствии ущерба наземной фауне от химического загрязнения.

На основании выше приведенного прогнозируется, что воздействие Минской ТЭЦ-3 на животный мир будет достаточно локальным во времени и пространстве, и не повлечет за собой радикальное ухудшение условий существования животных. Необратимых изменений в окружающей природной среде, в результате которых может быть нанесен непоправимый ущерб животному миру, при реализации технических решений в рамках планируемой деятельности не ожидается.

3.8 Воздействие на природные объекты, подлежащие особой или специальной охране. Прогноз и оценка изменения состояния природных объектов, подлежащих особой или специальной охране

В зоне воздействия Минской ТЭЦ-3 расположены объекты особо охраняемых природных территорий (ООПТ) — биологические заказники республиканского значения:

				-	
				•	
Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подпись и дата

Инв. № подл

- «Глебковка» (расчетная точка № 22).

В Республике Беларусь разработаны нормативы экологически безопасных концентраций загрязняющих веществ в атмосферном воздухе особо охраняемых природных территорий, отдельных природных комплексов и объектов особо охраняемых природных территорий, а также природных территорий, подлежащих специальной охране /33/.

Для определения соответствия загрязнения атмосферного воздуха нормативам экологически безопасных концентраций (ЭБК) был выполнен расчет рассеивания выбросов загрязняющих веществ (азота диоксида, серы диоксида и углерод оксида), обусловленных ТЭЦ-3 после реализации проекта, с определением максимальных приземных концентраций в расчетных точках на особо охраняемых природных территориях (ООПТ).

В соответствии с «Методикой расчета приземных концентраций загрязняющих веществ разных периодов осреднения применительно к крупным точечным источникам. 0212.22-99» определены среднечасовые концентрации (диоксида азота и серы диоксида) и средняя за 8 часов концентрация (углерод оксида).

Результаты расчета по вариантам приведены в приложении О.

В таблице 3.23 приведены максимальные из рассматриваемых вариантов значения среднечасовых (диоксида азота и серы диоксида) и средней за 8 часов (углерод оксида) концентраций в атмосферном воздухе ООПТ.

Таблица 3.23 — Максимальные значения среднечасовых и средней за 8 часов концентраций

Наименование особо оурандемых	No page	Приземная концентрация с учетом фона, мкг/м³			
аименование особо охраняемых природных территории (ООПТ)	№ расч. точки	среднечасовая		средняя за 8 часов	
природпых территерии (ССТТ)		азота	серы	углерод оксида	
		диоксид	диоксид		
Биологический заказник «Стиклево»	21	77	60	472	
Биологический заказник «Глебковка»	22	71	42	453	

Полученные расчетные значения концентраций показали, что загрязнение атмосферного воздуха в анализируемых точках не превышает нормативов ЭБК, приведенных в таблице E.43 приложения E к ЭкоНиП 1717.01.06-001-2017.

Поскольку уровень загрязнения атмосферного воздуха, ожидаемый после реализации проектных решений, соответствует нормативам экологически безопасных концентраций загрязняющих веществ в атмосферном воздухе особо охраняемых природных территорий, на промплощадке Минской ТЭЦ-3 объекты природоохранного, оздоровительного, рекреационного и историко-культурного назначения отсутствуют - изменений состояния природных объектов, подлежащих особой или специальной охране не прогнозируется. Воздействие оценивается как, воздействие низкой значимости.

3.9 Комплексная оценка воздействия на окружающую среду

Выше, в разделах были рассмотрены возможные воздействия на различные компоненты природной среды, определены их характеристики в периоды строительных работ и эксплуатации ТЭЦ. На основе полученных оценок в данном

				•		Г
_				_		1
10000	1/	-				ł
изм.	Кол.уч	JINCT	№док	Подп.	Дата	

Взам.

Подпись и дата

разделе подведены итоги оценки воздействия на окружающую среду планируемой деятельности, которые представлены в таблице 3.24.

Пространствен-

ный масштаб

воздействия

(балл оценки)

Значимость

воздействия

(общее

количество

баллов

Лист

92

Временной

масштаб

воздействия

(балл оценки)

Таблица 3.24 - Комплексная оценка воздействия на компоненты окружающей среды

Значимость

изменений

(балл оценки)

Источники и виды

воздействия

Взам. инв. №

Подпись и дата

Инв. № подл.

Кол.уч

Лист

№док

Подп.

Дата

зеществ от строительной (1) ехники и автотранспорта Зыбросы от ехнологического оборудования (1) Незначительное (1)	<i>ительства</i> граниченное (2)	Продолжительное (3)	Низкой значимости (6)			
Выбросы загрязняющих веществ от строительной (1) Этап эксп. Выбросы от ехнологического оборудования Незначительное (1) Незначительное (1)	граниченное (2) плуатации	• • • •	значимости			
зеществ от строительной (1) ———————————————————————————————————	(2) плуатации	• • • •	значимости			
Выбросы от технологического оборудования Незначительное (1)		<u></u>				
ехнологического (1) Рег оборудования	иональное (4)	l				
Поверунос		Многолетнее (4)	Средней значимости (16)			
Поверхностные воды						
Этап стро	ительства					
одохранилище)	Иестное (3)	Продолжительное (3)	Средней значимости (9			
Вагрязнение новерхностных вод (р. Свислочь) Незначительное Реферсительное (1)	егиональное (4)	Продолжительное (3)	Средней значимости (12)			
Этап эксплуатации						
Истощение поверхностных Незначительное вод (Чижовское (1)	Иестное (3)	Многолетнее (4)	Средней значимости (12)			
Вагрязнение новерхностных вод (р. Свислочь) Незначительное Республика (1)	егиональное (4)	Многолетнее (4)	Средней значимости (16)			
Подземн	ые воды					
Этап стро	ительства					
Истощение подземных вод Незначительное артводозабор) (1)	Местное (3)	Продолжительное (3)	Средней значимости (9)			
Загрязнение подземных Незначительное (1)	Местное (3)	Продолжительное (3)	Средней значимости (9)			
Этап эксп	плуатации					
Истощение подземных вод Незначительное (1)	Местное (3)	Многолетнее (4)	Средней значимости (12)			
Вагрязнение подземных Незначительное (1)	Местное (3)	Многолетнее (4)	Средней значимости (12)			
Почвы и почв	енный покро	В				
	:					

1240-П3-АП12

Источники и виды воздействия	Значимость изменений (балл оценки)	Пространственный масштаб воздействия (балл оценки)	Временной масштаб воздействия (балл оценки)	Значимост воздействи (общее количество баллов оценки)
	Этап сі	проительства		
Механические нарушения почвенного покрова при строительных работах	Незначительное (1)	Локальное (1)	Продолжительное (3)	Низкой значимості (3)
Загрязнение промышленными отходами	Незначительное (1)	Локальное (1)	Кратковременное (1)	Низкой значимост (1)
	Этап :	эксплуатации		· · · · · · · · · · · · · · · · · · ·
Загрязнение почвенного покрова случайными проливами и утечками ГСМ, сточными водами различного типа и твердыми отходами	Незначительное (1)	Локальное (1)	Многолетнее (4)	Низкой значимості (4)
	Раст	ительность	•	
	Этап сі	проительства	_	
Снятие растительного грунта, нарушение почвенно-растительного покрова, вырубка деревьев	Умеренное (3)	Локальное (1)	Продолжительное (3)	Средней значимост (9)
· · · · · · · · · · · · · · · · · · ·	Этап :	эксплуатации		
Движение транспорта, загрязнение растительного покрова случайными проливами и утечками ГСМ	Незначительное (1)	Локальное (1)	Многолетнее (4)	Низкой значимост (4)
		Фауна	·	
· · · · · · · · · · · · · · · · · · ·	Эта	т строительства		
Нарушение среды обитания	Незначительное (1)	Локальное (1)	Продолжительное (3)	Низкой значимост (3)
Факторы беспокойства, шум, свет, движение автотранспорта	Незначительное (1)	Локальное (1)	Продолжительное (3)	Низкой значимост (3)
	Этап :	эксплуатации	 -	
Физическое присутствие	Незначительное (1)	Локальное (1)	Многолетнее (4)	Низкой значимост (4)
Движение транспорта	Незначительное (1)	Ограниченное (2)	Многолетнее (4)	Низкой значимост (8)
Реконструкция Ми Поэтому временной ма принят как продолжител	сштаб воздейст	анируется в пе вия при провед	риод от 1 года д цении строительны	о 3 лет. ых работ

Изм. Кол.уч Лист №док Подп.

Дата

Инв. № подл.

1240-ПЗ-АП12

Лист 93

Воздействие на компоненты окружающей среды в период строительства (реконструкции) Минской ТЭЦ-3 оценивается, в основном, как воздействие низкой значимости. Воздействие на компоненты окружающей среды (растительный мир) в период строительства оценивается как воздействие средней значимости – количество баллов 9.

В период строительства и эксплуатации Минской ТЭЦ-3 интенсивность воздействия на компоненты гидросферы также характеризуется как средней значимости (9-16 баллов).

Воздействие на атмосферный воздух в период эксплуатации объектов оценивается как воздействия *средней значимости:* количество баллов 16.

Намечаемая деятельность по реконструкции Минской ТЭЦ-3 не окажет значимого воздействия на окружающую природную среду, и поэтому допустима.

	Взам. инв. №		
3	Подпись и дата	4 .	
	нв. № подл.		

Изм. Кол.уч Лист №док

Подп.

4 ПРОГНОЗ И ОЦЕНКА ИЗМЕНЕНИЯ СОЦИАЛЬНО-ЭКОНОМИЧЕСКИХ УСЛОВИЙ

Любая хозяйственная деятельность может иметь последствиями изменение социальных условий, как в сторону увеличения материальных благ и выгод местного населения в сферах экономики, просвещения, здравоохранения, так и в сторону ухудшения социальной и экологической ситуации в результате непредвиденных неблагоприятных последствий.

Основной мерой воздействия на социальную сферу в настоящее время можно считать изменение уровня жизни, который оценивается по множеству параметров, основными из которых являются: здоровье населения; демографическая ситуация, уровень образования, трудовая занятость, уровень науки и культуры, степень развития экономики, доходы населения и пр.

Учитывая, что расчетные максимальные приземные концентрации по всем загрязняющим веществам и группам суммации при реализации строительства ниже соответствующих гигиенических нормативов, степень загрязнения атмосферного воздуха (по величине суммарного показателя загрязнения «Р», учитывающего кратность превышения ПДК, класс опасности вещества, количество совместно присутствующих загрязнителей в атмосфере) будет соответствовать допустимой.

Следовательно, можно ожидать, что негативное воздействие загрязняющих веществ, поступающих от источников выбросов Минской ТЭЦ-3 после реализации проектных решений, на состоянии здоровья не скажется (фоновый уровень заболеваемости). К этому следует добавить, что поскольку на процесс формирования заболеваемости населения определенное влияние оказывает комплекс социальных и медицинских факторов, для предотвращения роста заболеваемости необходимо изыскивать средства для осуществления социальных программ по охране здоровья и повышения благосостояния населения.

Негативное воздействие от проведения какого-либо вида работ может проявляться в том, что, например, для проведения работ из сельскохозяйственного оборота изымаются земельные площади, в связи с чем сокращаются объемы сельскохозяйственной продукции. Положительным фактором является поступление денежных средств в бюджет города, района и области. Возможно предоставление некоторого количества рабочих мест для местного населения.

Потенциальное положительное воздействие на социальную и экономическую сферы проявится в:

- повышении надежности поставок электроэнергии и тепла городу Минску;
- выводе из эксплуатации устаревшего оборудования, имеющего низкую энергоэффективность, требующего постоянно растущих затрат на обслуживание и характеризующегося повышенной потенциальной аварийностью;
 - улучшении условий труда занятого на Минской ТЭЦ-3 персонала;
- размещении подрядов на выполнение строительных работ и поставку строительных материалов;
 - поступлении налоговых платежей в бюджет города.

Положительное воздействие планируемой деятельности на экономику города на этапе реконструкции ТЭЦ-3 будет связано с размещением подрядов на выполнение строительных работ и поставку строительных материалов. Основу

		выпо.	лнен	ие ст	роител	ΙЬНΙ
Инв. № подл.						
흸					_	
ſΗΒ.						
_	Изм.	Кол.уч	Лист	№док	Подп.	Да
					•	

Взам.

Подпись и дата

1240-П3-АП12

Лист

рабочей силы на этапе строительства составит персонал строительных организаций г. Минска.

В целом при выполнении всех необходимых мероприятий и технических решений запланированный проект не окажет негативного воздействия на социально-экономическую сферу, и результативное воздействие будет положительным. Следовательно, реализация проекта желательна, как социально и экономически выгодная как в местном, так и в региональном масштабе.

B3am. NHB, No		•
Подпись и дата		
Инв. № подл.		1240-П3-АП12
	Изм. Кол.уч Лист №док Подп. Дата	1240-113-A1112

Лист

Аварийной ситуацией считается всякое изменение в нормальной работе оборудования, которое создает угрозу бесперебойной работы, сохранности оборудования и безопасности обслуживающего персонала.

Основными причинами возникновения аварийных ситуаций на объектах являются нарушения технологических процессов, технические ошибки обслуживающего персонала, нарушения противопожарных правил и правил техники безопасности, отключение систем энергоснабжения, водоснабжения и водоотведения, стихийные бедствия, террористические акты и т.п.

Запроектные аварии отличаются от проектных только исходным событием, как правило исключительным, которое не может быть учтено без специально поставленных в техническом задании на проектирование условий. Запроектные аварии характеризуются разрушением тех же объектов и теми же экологическими последствиями, что и проектные аварии.

В отличие от аварийных режимов, в которых возможно функционирование предприятия и выдача энергии потребителям и которые не связаны с необратимыми, неконтролируемыми процессами, аварийные ситуации создают вероятность повреждения, разрушения зданий и сооружений, в результате оказывая нерасчетное воздействие на окружающую среду. Причиной таких ситуаций может быть воздействие опасных природных явлений, аварий вызванных техногенными факторами.

Под природными факторами понимаются разрушительные явления, вызванные геофизическими причинами, которые не контролируются человеком (землетрясения, ураганные ветры, повышенные атмосферные осадки и грозовые явления).

Рассматриваемая территория г. Минска расположена в условиях умеренно-континентального климата. В течение года в среднем наблюдается 15 дней с метелями, 59 дней с туманом, 75 % из них в холодную половину года, 25 дней с грозами.

В среднем выпадает 683 мм осадков в год. Максимальное суточное количество осадков может достигать 74 мм.

По сейсмической интенсивности территория г. Минска относится к неопасной – 5 баллов по шкале МSK-64 (ТКП 45-3.02-108-2008 (02250). Высотные здания. Строительные нормы проектирования).

Исходя из этого, прогнозируется, что вероятность возникновения чрезвычайных ситуаций, связанных с природными явлениями, очень низкая.

Под *техногенными* (антропогенными) факторами понимаются разрушительные изменения, обусловленные деятельностью человека или созданных им технических устройств и производств. Как правило, аварийные ситуации возникают вследствие нарушения регламента работы оборудования или норм его эксплуатации (технические отказы). Основными причинами отказов чаще всего являются: дефекты изготовления и некачественные материалы, старение оборудования, ошибочные действия персонала.

Основными условиями обеспечения безаварийной работы и безопасности обслуживающего персонала являются:

- знание технологической схемы, назначений установок и действия защит, блокировок и предупредительной сигнализации, значения всей запорной арматуры;
- умение быстро и правильно ориентироваться в производственной обстановке, своевременно обнаруживать неисправность оборудования, оперативно реагировать на звуковые и световые сигналы предупредительной сигнализации;

					T
Изм.	Кол.уч	Лист	№док	Подп.	Дата

. ИНВ. №

Подпись и дата

1240-П3-АП12

Лист

- знание и умение использовать методы устранения возникших неисправностей в работе оборудования;
- знание и умение пользоваться средствами индивидуальной защиты, оказания доврачебной помощи пострадавшим, знание порядка вызова скорой помощи и пожарной команды.

Наиболее значимым последствием аварийных ситуаций может быть нарушение энергоснабжения потребителей (полное или частичное введение ограничений), а также травмирование персонала.

Перечень возможных аварий, воздействующих на окружающую среду, при эксплуатации ТЭЦ и мероприятия по их ликвидации приведены в таблице 5.1.

Таблица 5.1 – Перечень возможных аварий, и мероприятия по их ликвидации

ликвидации	
Наименование	Мероприятия по ликвидации
Разрыв газопровода на территории объекта и на подводящем газопроводе	Отключение подачи газа автоматически, принятие дополнительных мер пожарной безопасности
Разрыв трубопровода теплосетей	Автоматическое отключение сетевых насосов и соответственно подачи воды потребителю
Загорание трансформаторов ОРУ	Отключение трансформаторов и использование средств пожарной части станции

На основании последствий подобных ситуаций, имевших место на предприятиях отрасли можно отметить, что выход их за пределы территории промплощадки исключается, поэтому возможные аварии при эксплуатации ТЭЦ могут быть оценены как локальные.

В процессе работы не исключены утечки смазочных и охлаждающих масел из емкостей хранения и из оборудования. Утечки нефтепродуктов создают реальную угрозу возникновения пожара и могут оказать отрицательное воздействие на окружающую среду. Для предотвращения утечек, а если они все же произошли в результате неисправностей или аварии, для сбора нефтепродуктов предусматривается комплекс мероприятий, в значительной степени уменьшающий риск возникновения пожара и предотвращающий неконтролируемый сброс нефтепродуктов.

Из общего количества мероприятий по предотвращению утечек и неконтролируемого сброса нефтепродуктов можно выделить три группы мероприятий:

- в местах хранения нефтепродуктов;
- при транспортировке;
- в местах расположения оборудования.

Предусматриваемые правилами проектирования обязательные противопожарные и противоаварийные мероприятия ограничивают вероятность и продолжительность аварийных ситуаций и как следствие — уменьшают воздействие на окружающую среду.

Инв. № подл. Подпись и дата Взам. ин

Изм. Кол.уч Лист №док Подп. Дата

1240-П3-АП12

Лист

К природоохранным мероприятиям относятся все виды хозяйственной деятельности, направленные на снижение или ликвидацию отрицательного антропогенного воздействия на природную среду, на сохранение, улучшение и рациональное использование природных ресурсов.

Для того, чтобы избежать значительного отрицательного воздействия на компоненты окружающей среды на этапах строительства и эксплуатации объекта, проектными решениями предусматривается ряд мероприятий.

Атмосферный воздух

Для минимизации воздействия на атмосферный воздух предлагается:

- строгое соблюдение технологического регламента работы оборудования:
- своевременное и качественное ремонтно-техническое обслуживание;
- ограничение операций в периоды неблагоприятных метеоусловий;
- обеспечение соблюдения технических условий эксплуатации ТЭЦ;
- проведение производственного мониторинга.

Мероприятия по смягчению воздействия физических факторов:

- работы в ночное время должны быть сведены к минимуму:
- использование строительной техники, соответствующей установленным стандартным уровням шума и вибрации;
- применение оборудования с надёжными вибрационными характеристиками, исключающими распространение сверхнормативных вибраций за пределы промплощадки, а также антивибрационных мероприятий (антивибрационные опоры, отделение металлоконструкций каркаса оборудования от металлоконструкций зданий, установка оборудования на собственные фундаменты достаточной массы для гашения вибрации и др.).

Почвенно-растительный покров

- С целью обеспечения рационального использования и охраны почвенно-растительного покрова необходимо предусмотреть:
- максимальное использование элементов существующей транспортной инфраструктуры территории;
- запрещение эксплуатации строительных машин, имеющих течи горючесмазочных материалов;
- максимальное использование малоотходных технологий строительства и эксплуатации объектов;
- хранение материалов, сырья и оборудования на бетонированных и обвалованных площадках;
- организацию мест временного размещения отходов в соответствии с действующими нормами и правилами;
- своевременную уборку строительного и бытового мусора для исключения его размыва, выдувания и оседания в почвенном профиле;
- своевременный вывоз, образующихся отходов производства и потребления и исключение переполнения мест временного размещения отходов;
- осуществление контроля за соблюдением правил хранения, состояния мест временного накопления отходов, их использования, размещения, утилизации и пожарной безопасности.

Эти мероприятия помогут исключить фильтрацию или поверхностное загрязнение почвенно-растительного покрова.

·			-		<u> </u>
Изм.	Кол.уч	Лист	№док	Подп.	Дата

1240-П3-АП12

Лист

99

Взам. инв. №

Подпись и дата

Инв. № подл.

Животный мир

Мероприятия по охране и предотвращению ущерба животному миру:

- максимальное сохранение почвенно-растительного покрова;
- минимизация освещения в ночное время на участках строительства;
- исключить доступ птиц и животных к местам складирования пищевых и производственных отходов;
 - поддержание в чистоте прилежащих территорий.

Выполнение перечисленных мероприятий позволит значительно снизить негативное воздействие на животный мир.

Поверхностные и подземные воды

Для предотвращения истощения подземных и поверхностных вод предусмотрено:

- использование питьевой воды только на хозяйственно-питьевые и бытовые нужды;
- строительство оборотной системы СОО-2*для охлаждения оборудования, устанавливаемого по настоящему проекту;
- отведение аварийного слива трансформаторного и турбинного масла в подземные железобетонные нефильтруемые емкости;
- очистка производственных стоков от смыва полов в помещении бокса автомобилей на очистных сооружениях и повторное их использование в цикле ТЭЦ;
- реконструкция оборотной системы COO-2 в части демонтажа градирни №5, строительства циркнасосной на месте градирни № 5, демонтажа циркнасосов внутри главного корпуса, самотечного канала и существующих циркводоводов, прокладка новых циркводоводов;
 - модернизация градирен СОО-1 в части установки водоуловителей;
- отведение стоков мойки автомобилей пожарного депо на проектируемые очистные сооружения;
 - благоустройство территории.

Для предотвращения загрязнения подземных вод предусматривается:

- принятие мер против утечек из подземных коммуникаций водопровода и канализации;
 - слив масла проектируемых трансформаторов в маслосборники.

Для предотвращения загрязнения поверхностных вод предусмотрены:

- контроль состава исходной поверхностной воды;
- раздельный сброс стоков:
- взаимное разбавление стоков;
- очистные сооружения нефтесодержащих стоков;
- контроль состава стоков на выпусках.

Подпись и дата									
Ne подл.	:							1240-ПЗ-АП12	Лист
NHB.		Изм.	Кол.уч	Лист	№док	Подп.	Дата	1240-113-A1112	100

7 ВЫВОДЫ ПО РЕЗУЛЬТАТАМ ПРОВЕДЕНИЯ ОЦЕНКИ ВОЗДЕЙСТВИЯ

1 Настоящим проектом предусматривается «Реконструкция Минской ТЭЦ-3 с заменой выбывающих мошностей очереди 14 МПА. 1-ая очередь».

В соответствии с заданием на проектирование в 1-ой очереди строительства предусматривается выделение 4-х пусковых комплексов строительства (1 ПК, 2 ПК, 3 ПК, 4 ПК).

1 пусковой комплекс (1 ПК)

В 1-м пусковом комплексе предусматривается строительство комплекса зданий и сооружений пожарного депо в составе:

- здание пожарного депо с гаражом-стоянкой на 6 автомобилей (3 въезда и 3 выезда), постом ТО, мастерской поста ТО, компрессорной, диспетчерской, помещениями мойки и сушки рукавов, сушки боевой одежды, склада вещимущества, классом оперативно-тактического мастерства, комнат отдыха дежурного караула, комнат разогрева и приема пищи, кабинетов руководства пожарной части, спортивного зала и зала собраний;
 - закрытого гаража-стоянки для автомобилей с постом мойки;
 - учебно-тренировочный комплекс.

2 пусковой комплекс (2 ПК)

Во 2 пусковом комплексе предусматривается:

- установка в турбинном отделении главного корпуса нового парового турбоагрегата Тп-115/130-12,8 в комплекте с генератором и вспомогательным оборудованием на месте демонтируемого парового турбоагрегата Т-100-130 ст. № 7;
 - замена деаэрационной установки ст. № 14;
- замена деаэраторов подпиточных ст. № 7, 8 с насосами и обвязкой трубопроводами, сетевых трубопроводов в объеме ячейки заменяемого оборудования;
- устройство заглубленного монолитного железобетонного бака аварийного слива турбинного масла:
- создание новой оборотной системы охлаждения СОО-2* для вновь устанавливаемого турбоагрегата ст. № 7;
- модернизация градирен № 1 и № 2 оборотной системы СОО-1 в части установки водоуловителя;
- открытая установка (со стороны оси А главного корпуса) трансформаторов ТДЦ-160000/110У1 и ТРДНС-25000/35У1 взамен существующих трансформаторов ТДЦГ-125000/110 (С7Т) и ТДН-15000/35 (Р8Т).

3 пусковой комплекс (3 ПК)

В 3 пусковом комплексе предусматривается:

- установка нового парового котла типа Е-500-13,8-560ГМ ст. №10 паропроизводительностью 500 т/ч в комплекте с тягодутьевыми механизмами и вспомогательным оборудованием с расширением котельного отделения в новых габаритах и конструкциях и выводом из эксплуатации существующего парового котла ТП-87 ст. № 8;

Изм.	Кол.уч	Лист	№док	Подп.	Дата

Взам.

Подпись и дата

Инв. № подл.

1240-П3-АП12

Лист

- в части XBO замена морально и физически устаревших существующих двух осветлителей производительностью по 1000 м³/ч на аналогичные по своим параметрам и характеристикам;

- модульная компрессорная установка для снабжения сжатым технологическим и инструментальным (подготовленным) воздухом проектируемого котла № 10, для продувки газопроводов.

4 пусковой комплекс (4 ПК)

В 4 пусковом комплексе предусматривается:

- замена крана мостового электрического грузоподъемностью 100/20 т в турбинном отделении главного корпуса.
- 2 Оценка воздействия на окружающую среду и прогноз последствий эксплуатации Минской ТЭЦ-3 выполнялись по ряду критериев, принятых в проектной и научной практике анализа экологических последствий загрязнения окружающей среды, в соответствии с требованиями нормативных актов Республики Беларусь, действующих методических указаний, а также на основе результатов научных исследований.
- 3 Проанализировано существующее состояние компонентов окружающей природной среды и социально-экономических условий. Полученные результаты свидетельствуют о благоприятности состояния окружающей среды и социально-экономических условий для реализации намечаемой деятельности.
- 4 Определены источники, выявлены и оценены возможные виды воздействия на окружающую среду на стадии реконструкции и эксплуатации. На основании пространственного и временного масштаба воздействия и интенсивности, т. е. значимости изменений в природной среде выполнена оценка значимости воздействия Минской ТЭЦ-3.
- 5 Воздействие на атмосферный воздух оценивалось с позиции соответствия ожидаемого уровня загрязнения атмосферного воздуха, обусловленного Минской ТЭЦ-3, законодательным и нормативным требованиям, предъявляемым к качеству атмосферного воздуха.
- 5.1 Оценка воздействия на атмосферный воздух показала, что после реализации проектных решений ожидаемое максимальное загрязнение атмосферного воздуха по всем ингредиентам ниже ПДК в атмосферном воздухе населенных мест:
- приземные концентрации загрязняющих веществ в атмосферном воздухе, обусловленные Минской ТЭЦ-3, обеспечены в пределах нормативов качества атмосферного воздуха на любом удалении от источников выброса;
- на границе санитарно-защитной зоны ТЭЦ-3 и на территории ближайшей жилой застройки максимальные приземные концентрации (с учетом фона) ниже предельно допустимых значений, как по каждому загрязняющему веществу, так и при учете их комбинированного действия;
- на территории высотной жилой застройки максимальное загрязнение с учетом фона соответствует нормативам качества атмосферного воздуха.

Изм.	Кол.уч	Лист	№док	Подп.	Дата

1240-П3-АП12

Лист 102

Взам. инв. №

Подпись и дата

Инв. № подл.

Инв. № подл.

5.2 В соответствии с существующими критериями ожидаемое воздействие Минской ТЭЦ-3 на атмосферный воздух оценивается как допустимое. Необратимых воздействий на состояние атмосферы оказано не будет.

Учитывая масштаб воздействия (региональное - зона воздействия 9,2 км), продолжительность воздействия (многолетнее) и значимость изменений (незначительные), общая оценка значимости воздействия Минской ТЭЦ-3 на атмосферный воздух по этим параметрам (16 баллов) соответствует воздействию средней значимости.

- 6 После реализации планируемой деятельности суммарное количество валовых выбросов загрязняющих веществ уменьшится в 1,35 раза по отношению к существующему выбросу.
- 7 Воздействие физических факторов (шум, электромагнитные поля, вибрация) не превысит санитарно-гигиенические нормативы и оценивается как воздействие низкой значимости.
- 8 Воздействие ТЭЦ-3 на поверхностные и подземные воды определяется режимом водопотребления и отведения стоков.
- 8.1 Водоотведение Минской ТЭЦ-3 в связи ее реконструкцией с заменой выбывающих мощностей очереди 14 МПА. 1-ая очередь не превысит утверждённых и согласованных предельных величин для Минской ТЭЦ-3. Водопотребление на бытовые нужды незначительно превысит на 1,96 % лимит водопотребления для ТЭЦ-3;
- 8.2 Воздействие ТЭЦ-3 на компоненты гидросферы характеризуется как средней значимости 9-16 баллов;
- 8.3 Намечаемая деятельность по реконструкции и эксплуатации Минской ТЭЦ-3 не окажет сильного необратимого воздействия на гидросферу и поэтому допустима к реализации по экологическим соображениям.
- 9 Воздействие Минской ТЭЦ-3 на другие компоненты окружающей среды оценивается как воздействие низкой значимости, за исключением воздействия на растительный мир в период реконструкции объекта (воздействие на данный компонент оценивается как средней значимости). Установка оборудования не изменит экологических условий среды обитания животных и не нарушит связей между популяциями, не приведет к непосредственному изъятию животных особей и уничтожению подходящих для их обитания биотопов.
- 10 Прогноз и оценка изменения социально-экономических условий показала, что реализация проекта желательна, как социально и экономически выгодная, как в местном, так и в региональном масштабе. Потенциальное положительное воздействие на социальную и экономическую сферы проявится в:
 - повышении надежности поставок электроэнергии и тепла городу Минску;
- выводе из эксплуатации устаревшего оборудования, имеющего низкую энергоэффективность, требующего постоянно растущих затрат на обслуживание и характеризующегося повышенной потенциальной аварийностью;
 - улучшении условий труда, занятого на Минской ТЭЦ-3 персонала;

Изм.	Кол.уч	Лист	№док	Подп.	Дата	

1240-П3-АП12

Лист 103

- размещении подрядов на выполнение строительных работ и поставку строительных материалов;
 - поступлении налоговых платежей в бюджет города.

11 В целом по совокупности всех показателей материалы выполненной оценки воздействия Минской ТЭЦ-3 на окружающую среду свидетельствуют о допустимости ее эксплуатации без негативных последствий для окружающей среды, так как воздействие планируемой деятельности на окружающую природную среду будет в допустимых пределах, не превышающих способность компонентов природной среды к самовосстановлению.

| 1240-П3-АП12 | 1240-П3-П3-АП12 | 1240-П3-АП12 |

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1 В.С.Николаевский. Биологические основы газоустойчивости растений. Новосибирск, 1979
- 2 М.Трешоу. Загрязнение воздуха и жизнь растений, Ленинград, Гидрометиздат,1988
- 3 Ю.А.Израэль и др. Кислотные дожди. -Л., Гидрометиздат, 1989
- 4 Временные нормативы предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе, оказывающих вредное воздействие на лесные насаждения в районе музея-усадьбы «Ясная Поляна».- М. 1984
- 5 В.С. Николаевский, А.Т. Мирошникова. Допустимые нормы загрязнения воздуха для растений. Гигиена и санитария, N4.1974
- 6 В.С.Николаевский. Н.А.Першина. Проблемы предельно-допустимых концентраций загрязнителей, воздействующих на растения и образуемые ими сообщества.- В кн. Проблемы фитогигиены и охрана окружающей среды. Л.1981
- 7 В.А. Алексеев. Чувствительность растений и стандарты на загрязнение атмосферы. Лесные экосистемы и атмосферное загрязнение Л.: Наука. Л.1990
- 8 Тепловой расчет котельных агрегатов. Нормативный метод, Санкт-Петербург, 1998
- 9 М.Е.Берлянд Современные проблемы атмосферной диффузии и загрязнения атмосферы.- Л.: Гидрометеоиздат, 1975
- 10 Пинигин М.А. Научные основы санитарной охраны атмосферного воздуха. в кн.: Санитарная охрана атмосферного воздуха городов. М.: Медицина, 1976г.
- 11 В.С. Николаевский. Биологические основы газоустойчивости растений. Новосибирск, 1979.
- 12 Экологический бюллетень. Минприроды РБ. 2018-2019 г.г.
- 13 Реестр земельных ресурсов Республики Беларусь (по состоянию на 1 января 2020 года). Государственный комитет по имуществу Республики Беларусь. Минск, 2020
- 14 Методические рекомендации по гигиенической оценке качества атмосферного воздуха и эколого-эпидемиологической оценке риска для здоровья населения, МР 113-9711, утвержденные Главным государственным санитарным врачом Республики Беларусь 10 февраля 1998 года
- 15 Инструкция № 18-0102 «Эпидемиологическая оценка риска влияния окружающей среды на здоровье населения», утвержденная Главным государственным санитарным врачом Республики Беларусь 11 июля 2002 года

Инв. № подл. Подпись и дата

Кол.уч

Лист №док

Подп.

Дата

инв. №

Взам.

12

1240-П3-АП12

- 16 Инструкция 2.1.6.11-9-29-2004 «Оценка риска для здоровья населения от воздействия химических веществ, загрязняющих атмосферный воздух». утвержденная постановлением Главного государственного санитарного врача Республики Беларусь 05 июля 2004 года № 63
- 17 ОНД-86. Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. Л.; Гидрометиздат, 1987
- 18 Временные нормативы предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе, оказывающих вредное воздействие на лесные насаждения в районе музея-усадьбы "Ясная Поляна". - М., 1984.
- 19 Инструкция о порядке разработки и утверждения инструкции осуществлению производственного контроля В областиохраны окружающей среды, рационального использования природных ресурсов. утвержденная постановлением Минприроды РБ от 11.10.2013 № 52 (в ред. постановлений Минприроды РБ от 08.12.2014 № 42, от 03.05.2016 № 14)
- 20 Инструкция о порядке проведения локального мониторинга окружающей среды юридическими лицами, осуществляющими хозяйственную и иную деятельность, которая оказывает вредное воздействие на окружающую среду, в том числе экологически опасную деятельность. Утверждена Постановлением Министерства природных ресурсов и охраны окружающей среды Республики Беларусь от 1 февраля 2007 г. №9 (в ред. от 15.12.2011 Nº 49)
- 21 Положение о порядке проведения в составе национальной системы мониторинга окружающей среды в Республике Беларусь мониторинга подземных вод использования его данных. Утверждено Постановлением Совета Министров РБ от 28.04.2004 №482 (в ред. постановлений Совмина от 10.06.2008 №835, от 19.08.2016 №655)
- 22 Положение о порядке проведения оценки воздействия на окружающую среду, требованиях к составу отчета об оценке воздействия на окружающую среду, требованиях к специалистам, осуществляющим проведение воздействия на окружающую среду. Утверждено Постановлением Совета Министров Республики Беларусь 19.01.2017 N 47
- 23 ТКП 17.02-08-2012 (02120) Правила проведения оценки воздействия на среду (OBOC) И подготовки отчета. постановлением Минприроды Республики Беларусь от 5 января 2012 г. Nº 1-T.
- 24 Закон Республики Беларусь «О государственной экологической экспертизе, стратегической экологической оценке и оценке воздействия окружающую среду» от 18 июля 2016 г. N 399-3 (в редакции Закона Республики Беларусь от 15 июля 2019 г. № 218-3)
- 25 Конвенция об оценке воздействия на окружающую среду в трансграничном контексте, подписанная в г. Эспо 25 февраля 1991 года
- 26 Закон Республики Беларусь «Об охране окружающей среды» от 26 ноября 1992 г. №1982-XII (в редакции Закона Республики Беларусь от 17.07.2017, с изменениями от 30.12.2018)

№ подл. Кол.уч Лист №док Подп.

NHB

Взам.

Подпись и дата

ZHB

1240-П3-АП12

Лист

- 27 Закон Республики Беларусь «Об особо охраняемых природных территориях» от 15 ноября 2018 г. № 150-3
- 28 Закон Республики Беларусь «О растительном мире» от 14 июня 2003 г. №205-3 (ред. от 18.12.2018 №153-3)
- 29 Закон Республики Беларусь «О животном мире» от 10 июля 2007 г. №257-3 (ред. от 18.07.2016 №399-3)
- 30 Закон Республики Беларусь «Об обращении с отходами» от 20 июля 2007г. №271-3 (ред. от 10.05.2019 №186-3)
- 31 Закон Республики Беларусь «Об охране атмосферного воздуха» от 16 декабря 2008 года № 2-3 (в редакции Закона Республики Беларусь от 17.07.2017 № 51-3).
- 32 Закон Республики Беларусь «О санитарно-эпидемическом благополучии населения» от 7 января 2012 г. №340-3 (в редакции Законов Республики Беларусь от 05.01.2016 №355-3, от 30.06.2016 N 387-3)
- 33 ЭкоНиП 17.01.06-001-2017 Экологические нормы и правила «Охрана окружающей среды и природопользование. Требования экологической безопасности» (в ред. постановления Минприроды РБ от 18.12.2019 № 6-Т)
- 34 Инструкция о порядке сбора, накопления и распространения информации о наилучших доступных технических методах. Утверждена Постановлением Министерства природных ресурсов и охраны окружающей среды Республики Беларусь 8 июня 2009 г. №38 (в ред. постановления Минприроды от 08.12.2014 N 42)
- 35 Нормативы предельно допустимых концентраций загрязняющих веществ в атмосферном воздухе и ориентировочно безопасных уровней воздействия загрязняющих веществ в атмосферном воздухе населенных пунктов и мест массового отдыха населения. Утверждены Постановлением Министерства здравоохранения Республики Беларусь от 08.11.2016 № 113
- 36 ГН 2.1.7.12-1-2004. Перечень предельно допустимых концентраций (ПДК) и ориентировочно допустимых концентраций (ОДК) химических веществ в почве. Утверждены Постановлением Главного государственного санитарного врача Республики Беларусь от 25 февраля 2004 г. №28
- 37 Предельно допустимые концентрации (ПДК) подвижных форм хрома, цинка, кадмия в почвах (землях) различных функциональных зон населенных пунктов, промышленности, транспорта, связи, энергетики, обороны и иного назначения. Утверждены Постановлением Министерства здравоохранения Республики Беларусь от 6 ноября 2008 г. №187
- 38 Предельно допустимые концентрации нефтепродуктов в почвах для различных категорий земель. Установлены Постановлением Министерства здравоохранения Республики Беларусь от 29 апреля 2009 г. №44
- 39 Нормативы предельно допустимых концентраций подвижных форм никеля, меди и валового содержания свинца в землях (включая почвы), расположенных в границах населенных пунктов, для различных видов территориальных зон по преимущественному функциональному использованию территорий населенных пунктов. Утверждены

Инв. № подл. Подпись и дата Взам. инв.

Кол.уч

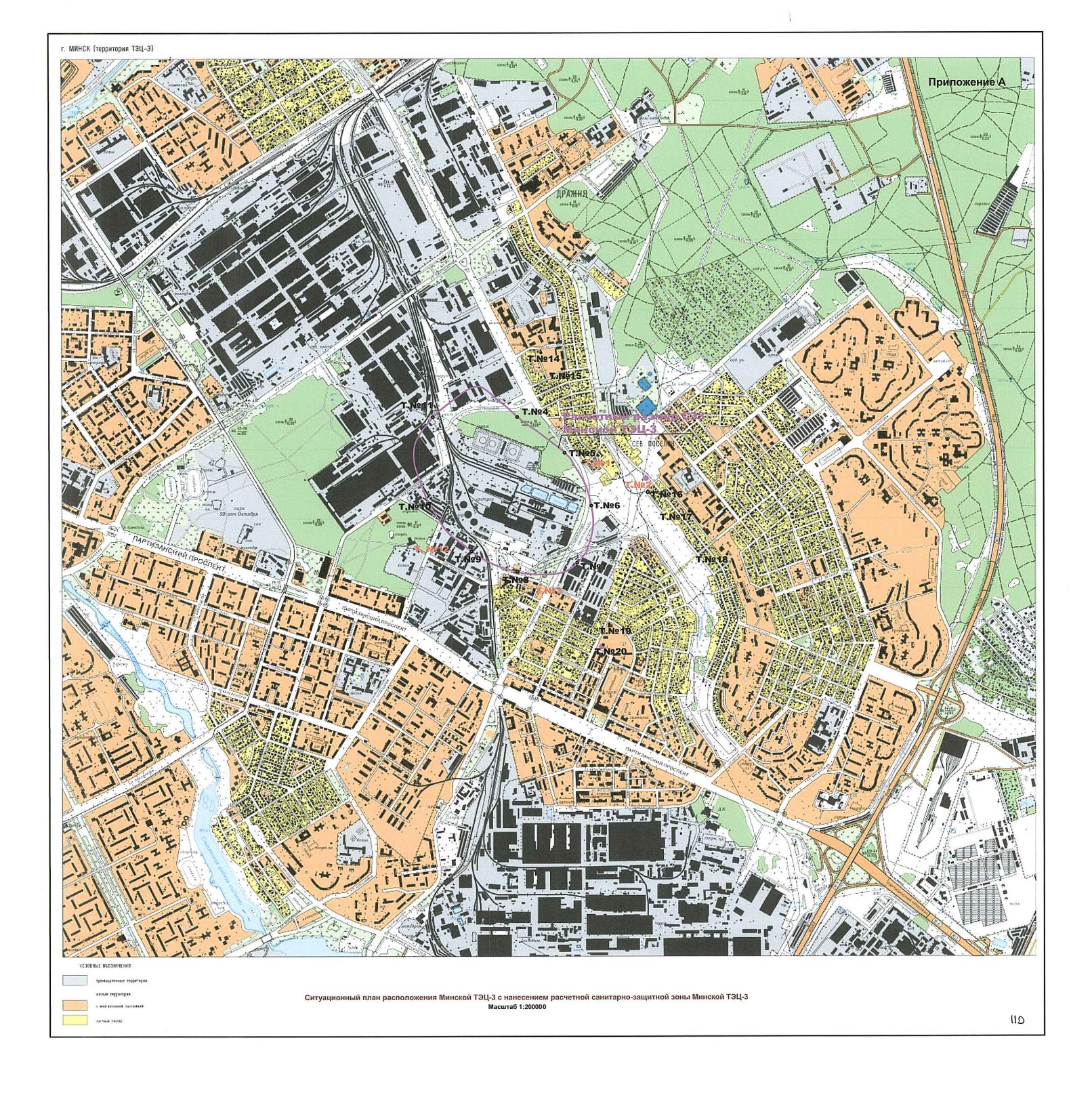
Лист

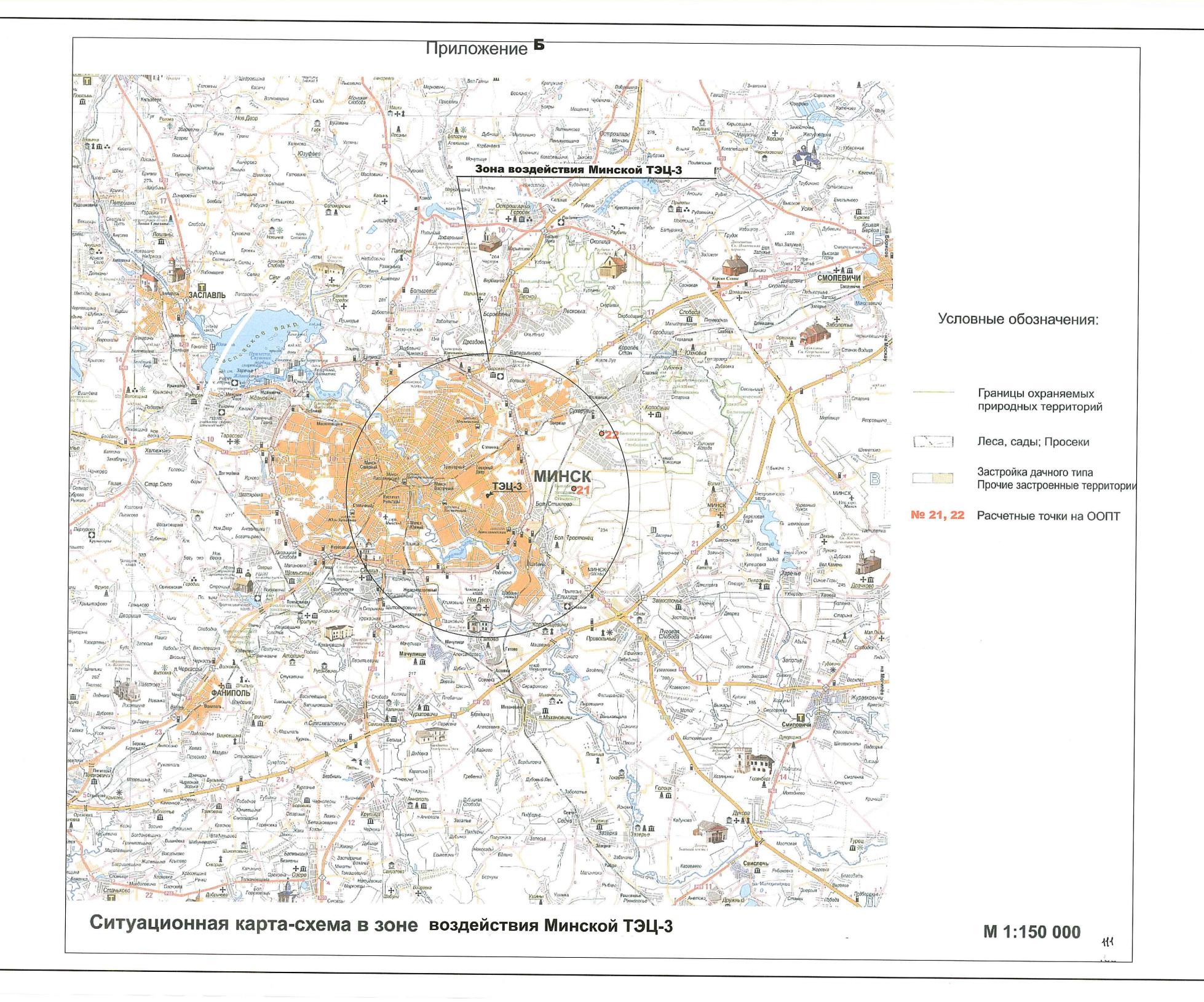
№док

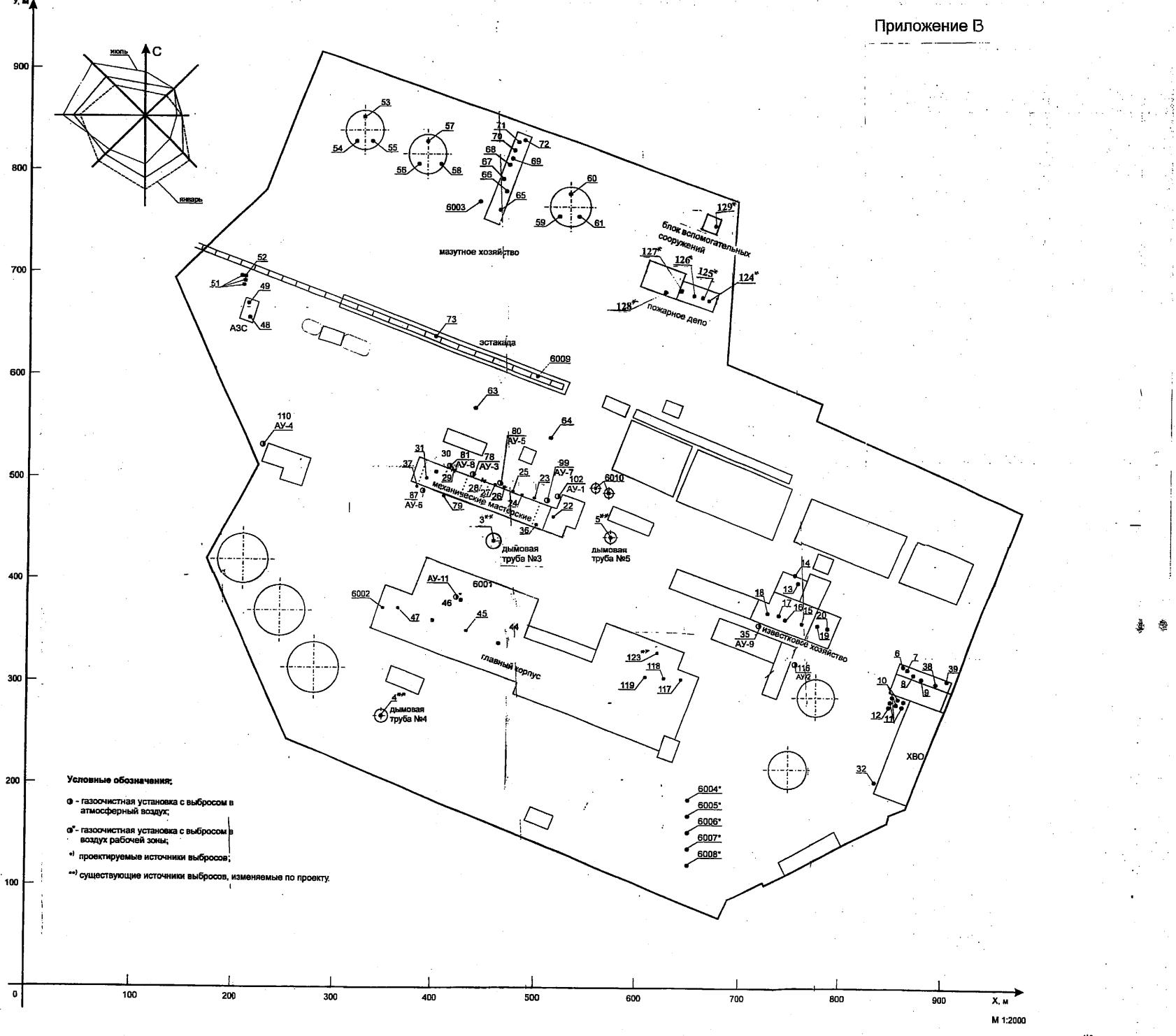
Подп.

Дата

- Постановлением Министерства здравоохранения Республики Беларусь от 19 ноября 2009 г. №125
- 40 СанПиН «Шум на рабочих местах, в транспортных средствах, в помещениях жилых, общественных зданий и на территории жилой застройки», утвержденные постановлением Минздрава Республики Беларусь № 115 от 16.11.2011
- 41 Гигиенические требования к электрическим и магнитным полям тока промышленной частоты 50 Гц при их воздействии на население. Утверждены постановлением Министерства здравоохранения Республики Беларусь от 21.06.2010г. № 68 (ред. 12.06.2012 № 67)
- 42 Специфические санитарно-эпидемиологические требования к установлению санитарно-защитных зон объектов, являющихся объектами воздействия на здоровье человека и окружающую среду. Утверждены постановлением Совета Министров РБ 11.12.2019 № 847
- 43 Методика расчета приземных концентраций загрязняющих веществ разных периодов осреднения применительно к крупным точечным источникам 0212.22-99. Утверждена приказом Минприроды от 30.12.1999 № 390
- 44 СНБ 2.04.02-2000. Строительная климатология. Утверждены Приказом Министерства архитектуры и строительства Республики Беларусь от 7 декабря 2000 г. №563
- 45 СНБ 2.04.02-200. Строительная климатология (Изменение 1). Утверждено Приказом Министерства архитектуры и строительства Республики Беларусь от 2 апреля 2007 г. №87
- 46 Об установлении нормативов качества воды поверхностных водных объектов. Утверждены Постановлением Министерства природных ресурсов и охраны окружающей среды Республики Беларусь от 30.03.2015 № 13
- 47 СанПиН 2.1.2.12-33-2005. Гигиенические требования к охране поверхностных вод от загрязнения. Утверждены Постановлением Главного государственного санитарного врача Республики Беларусь от 28 ноября 2005 г. №198
- 48 ГН 2.1.5.10-21-2003. Предельно допустимые концентрации (ПДК) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. Утверждены Постановлением Главного государственного санитарного врача Республики Беларусь от 12 декабря 2003 г. №163
- 49 ГН 2.1.5.10-20-2003. Ориентировочно допустимые уровни (ОДУ) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования. Утверждены Постановлением Главного государственного санитарного врача Республики Беларусь от 12 декабря 2003 г. №162
- 50 ГН 2.1.5.10-29-2003. Предельно допустимые концентрации (ПДК) и ориентировочные допустимые уровни (ОДУ) химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования (дополнение №1 к ГН 2.1.5.10-21-2003 и ГН 2.1.5.10-20-


Инв. № подл. Подпись и дата Взам. инв. №


- 2003). Утверждены Постановлением Главного государственного санитарного врача Республики Беларусь от 30 декабря 2003 г. №207
- 51 Государственный кадастр атмосферного воздуха: информационный бюллетень за 2019 год. Минск, 2020
- 52 Информационный бюллетень «Здоровье населения и окружающая среда Минской области: достижение целей устойчивого развития за 2019 год». Минздрав РБ, ГУ «Минский областной центр гигиены, эпидемиологии и общественного здоровья», 2020.


. Изм. Кол.уч Лист №док Подп. Дата

1240-П3-АП12

Лист

Приложение Г на листах 113-125

Таблица Г.1 - Расчет величин выбросов загрязняющих веществ по проекту (Вариант 1)

<u> Габлица Г.1 - Расчет величин выбросов</u>	Обозначение,	Дымовая тр	уба №3	Д	ымовая труба N	25	Дым.труба №4	Дым. труба № 123
Наименование показателя	размерность	E-500-13,8-560	T∏-87	ТП-80	ТП-87	КВГМ-180	ПТВМ-100	ГТ(КУ без дожига)
		ст. № 10	ст. № 9	ст. № 6	ст. № 7	ст.№ 5 - 7	ст.№ 1 - 4	L
Исходные данные							1	1
Количество котлов в работе: 1 ре	мим п	11	1	1	7	- 1		газ
Вид расчетного топлива		ra3	газ	<u>ra3</u>	ra3	<u>ras</u>	<u>газ</u> 11.87	58.10
Расход топпива на 1 котел:	В, т/ч, тыс. м ³ /ч	38.75	28.27	27.20	27.20	24.31	12.37	30.10
Объем сухих дымовых газов газ	Vdry,m³/m³	12.37	12.37	12.37	12.37	12.37	12.37	32.41
Объем сухих дымовых газов α=3,5	Vdry,m³/m³		-			300	300	100
Концентрация NO _X в сух. дым. газах при α=1,4 газ газ	C _{NOx} , Mr/HM ³	150	240	300	300	300	300	100
Концентрация SO ₂ в сух. дым. газах при α=1,4 газ	С _{so2} , мг/нм ³	35					<u>-</u>	
Концентрация СО в сух. дым. газах при α=1,4 газ	C _{CO} , Mr/HM ³	250	55	55	55	55	. 55	300
Концентрация общего органического углерода газ	Смет., мг/м3					-		150
Доля общего органического углерода				-				0.01106
Теплота сгорания топлива: газ	Qнр, МДж/м³,	33.67	33.67	33.67	33.67	33.67	33.67	33.67
Меркаптановая сера в газе	r/m³	-	0.016	0.016	0.016	0.016	0.016	<u> </u>
Меркаптановая сера в газе	%		0.0023	0.0023	0.0023	0.0023	0.0023	
Сероводород в газе	г/м³		0.01	0.01	0.01	0.01	0.01	· <u>-</u>
Сероводород в газе	%		0.0015	0.0015	0.0015	0.0015	0.0015	
Плотность газа	г/м³	<u>-</u>	0.684	0.684	0.684	0.684	0.684	<u> </u>
Суммарное содержание серы газ	(Sp +0,94xH₂S),%		0.0037	0.0037	0.0037	0.0037_	0.0037	
Допя воздуха, подаваемого во II ст. сжигания газ	<u></u>	0	0	7	7	0 400	0	270
	жим Дф, т/ч, Гкал/ч	500	355	341.35	341.35	180	89.3	270 270
Номинальная паропроизводительность	Дн,т/ч, Гкал/ч	500	420	420	420	180	100 6.23	- 270
Ширина топки	a _i ,M	14.08	14.08	14.08	14.08	6.48		 -
Глубина топки	b _t ,M	7.522	7.522	7.522	7.522	5.74	6.23	
Число ярусов горелок	Z _t ,м	1	1	1	1	2	2	<u> </u>
Расстояние между осями соседних горелок по высоте	h, ,м	_	_	_		2.1	0.8	
Объем толочной камеры	Vm,м3	2323	2323	2323	2323	763	245	<u> </u>
Теплонапряжение топочного объема, газ газ	g _v , MBt/m³	0.156	0.114	0.110	0.110	0.298	0.454	<u> </u>
Коэф.,хар-щий влияние рец-ции на выброс	d	0	4	4	4	0	0	<u>-</u>
Степень рец-ции дымовых газов (для г/с)	г, доли	0	0.12	0.12	0.22	0	0	
Козф.учит.рец-цию дым.газов (для по)	K,	1	1.48	1.48	1.88	1	1	

Наименование показателя		Обозначение,	Дымовая тр	уба №3	. Дь	імовая труба N	25	Дым.труба №4	Дым. труба № 123
TISMISTISSELIIG HOMOGETONI		размерность	E-500-13,8-560	ТП-87	TП-80	TП-87	КВГМ-180	ПТВМ-100	ГТ(КУ без дожига)
			ст. № 10	ст. № 9	_ст, № 6	ст. № 7	ст.№ 5 - 7	ст.№ 1 - 4	·
Коэффициент учитывающий нагрузку котла	1 режим	K _d	1.00	1.41	1.51	1.51	1.00	1.28	-
Коэффициенты	-	K _{st} ,K _{vl}	1	1	.1	1	1	1	-
Теплонапряжение пов-ти зоны горения	газ	g 1, МВт/м2	1.26	0.92	0.88	0.88	1.44	1.13	-
Концентрация бенз(а)пирена:	1 режим	С _{ьр} ,мг/м ³	0.0004	0.0012	0.0014	0.0018	0.0005	0.0010	-
Температура дым.газов на выходе из трубы		T, ⁰C	152	109	147	147	196	225	110
Коэф. избытка воздуха на выходе из трубы		α	1.05	1.3	1.23	1.23	1.12	1.12	3.7
Результаты расчета									
Диоксид азота (NO2), на котлы:	•	1 режим, г/с	19.991	23.329	28.065	28.065	25.082	12.249	52.349
На трубу:		1 режим, г/с	43.320		81.212			12.249	52,349
Окид углерода (СО), на котлы:		1 режим, г/с	33.318	5.346	5.145	5.145	4.598	2.246	157.047
На трубу:		1 режим, г/с	38.664		14.889	_		2.246	157.047
Сернистый ангидрид (SO ₂),на котлы:		1 режим, г/с	4.664	0.584	0.562	0.562	0.502	0.245	-
На трубу:		1 режим, г/с	5.248		1.625			0.245	-
Бенз(а)пирен, на котлы:		1 режим, г/с	0.000058	0.000121	0.000129	0.000164	0.000040	0.000042	-
На трубу:		1 режим, г/с	0.000180		0.000334			0.000042	•
Общий органический углерод		1 режим, г/с	-	-	-	-	-	· -	0.868
		1 режим, г/с	-		-			-	0.868
Объем дымовых газов на котлы:		1 режим м ³ /с	188.62	150.28	151.13	151.13	138.45	71.79	836.46
Объем дымовых газов на трубу:		1 режим м ³ /с	338.89		440.70			71.79	836.46
Температура дымовых газов на трубу:		1 режим Т, ⁰ С	133		162			225	110

Таблица Г.2 - Расчет выбросов тяжелых металлов по проекту (Вариант 1)

НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ		ОБОЗНАЧЕНИЕ	Дымовая тр	уба № 3	Дымовая т	руба № 5	Дым. труба № 4	Дым.труба №123
		РАЗМЕРНОСТЬ	E-500-13,8-560	ТП-87	ТП-80, ТП-87	КВГМ-180	ПТВМ-100	ГТ÷КУ
			ст.№ 10	ст. № 9	ст. № 6 - 8	ст. № 5-7	ст. № 1-4	
Исходные данные				_				
Количество котлов в работе 1 режим		n	1 1	1	2	1	1	1
Вид расчетного топлива в г/с			ras	газ	газ	ras	ras	газ
Расход топлива:		В, т/ч, тыс.м3/ч	38.75	28.27	27.20	24.31	11.87	58.10
Теплота сгорания топлива:	газ	Q ^Р _н , МДж/м ³	33.67	_	33.67	33.67	33.67	33.67
Удельные показатели: Hg	газ	F _i , г/тыс.м³	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
Результаты расчета								
НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ		ОБОЗНАЧЕНИЕ	Дымовая тр	уба № 3	Дымовая т	руба № 5	Дым. труба № 4	Дым.труба №123
		РАЗМЕРНОСТЬ	E-500-13,8-560	ТП-87	ТП-80, ТП-87	КВГМ-180	ПТВМ-100	ГТ+КУ
			ст.№ 10	ст. № 9	ст. № 6 - 8	ст. № 5-7	ст. № 1-4	
Ртуть и ее соединения Нд, на котлы:		г/с, 1 режим	0.000015	0.000011	0.000021	0.000009	0.000005	0.000023
На трубу:	•	≥/с, 1 режим	0.000026		0.000031		0.000005	0.000023

Таблица Г.3 - Расчет величин выбросов загрязняющих веществ по проекту (Вариант 2)

таолица г.з - Расчет величин выор	JOCOB Surpi	Обозначение,	Дымовая тр			ымовая труба N	<u>⊵</u> 5	Дым.труба №4	Дым. труба № 123
Наименование показателя		размерность	E-500-13,8-560	T∏-87	T/1-80	T∏-87	КВГМ-180	ПТВМ-100	ГТ(КУ без дожига)
			ст. № 10	CT. № 9	ст. № 6	ст. № 7	CT.N2N2 5 - 7	ст.№№ 1 - 4	т түтэ осо долинау
Исходные данные		L .	277772		1 000.00				
Количество котлов в работе;	1 режим	n	1	1	1	1	1	1	1
Вид расчетного топлива	•		газ	газ	мазут	мазут	мазут	мазут	газ
Расход топлива на 1 котел:		В, т/ч, тыс. м ³ /ч	38.75	28.27	27.27	27.27	21.86	11.04	58,10
Годовой расход топлива:	мазут	В, т/год	6953.68		1410.89	1410.89	1222.12	5143.27	•
	газ	В, тыс.м ³ /год	203902.44	59694.25	59690.77	59690.77	2896.34	12153.31	378533.97
Средний расход топлива	мазут	В, кг/с	16.10	-	-	-	-	ı	•
	газ	В, м ³ /с	6.56	-	-	-	-	1	•
Время работы установки в году	мазут	Т, ч/год	120	-	-		•	•	•
	газ	Т, ч/год	8640.00	-	<u> </u>		-	-	-
Объем сухих дымовых газов	мазут	Vdry,m³/кг	13.83	-	_ 13.83	13.83	13.83	13.83	•
Объем сухих дымовых газов	газ	Vdry,m ³ /m ³	12.37	12.37	12.37	12.37	12.37	12.37	-
Объем сухих дымовых газов α=3,5	ras	Vdry,m³/m³	-	=	-	-	250	-	32.41
Концентрация NO _X в сух. дым. газах при α=1,4	мазут	C _{NOx} , Mr/HM ³	200	240	600	600	350	350	-
	газ	C _{NOx} , Mr/HM ³	150		300	300	300	300	100
Концентрация СО в сух. дым, газах при α=1,4	мазут	С _{со} , мг/нм ³	250	150	150	150	150	150	<u>.</u>
	газ	С _{со} , мг/нм ³	250	55	55	55	55	55	300
Концентрация SO₂в сухих дым. газах при α=1,4	ras	C _{SO2} , мг/нм ³	35	-	-	-			-
Концентрация общего органического углерода в с	-]		4
дым.газах	газ	C _{yr} ., mr/нм ³	<u> </u>		-	-	-	-	150
Доля общего органического углерода	ra3	 	-	-	<u> </u>	-	-	-	0.01106
Теплота сгорания топлива:	мазут	Qнр, МДж/кг,	37.99		37.99	37.99	37.99	37.99	•
	ras	Qнр, МДж/м ³ ,	33.67	33.67	33.67	33.67	33.67	33.67	33.67
Содержание влаги на рабочую массу	мазут	W ^P , %	6.18		6.18	6.18	6.18	6.18	-
Содержание золы на рабочую массу	мазут	A ^p , %	0.055	-	0.055	0.055	0.055	0.055	-
Содержание серы на рабочую массу	мазут	S ^р наю, %	. 1.2		1.2	1,2.	1.2	1.2	
Содержание серы на рабочую массу	мазут	S ^P _{r.} %	1,2	-	1.2	1.2	1.2	1.2	-
Меркаптановая сера в газе		г/м ³	_	0.016	0.016	0.016	0.016	0.016	_
Меркаптановая сера в газе		%	_	0.0023	0.0023	0.0023	0.0023	0.0023	<u>.</u>
Сероводород в газе		г/м ³	-	0.01	0.01	0.01	0.01	0.01	•
Сероводород в газе		%	-	0.0015	0.0015	0.0015	0,0015	0.0015	
Плотность газа		r/m³	-	0.684	0.684	0.684	0.684	0.684	•
Суммарное содержание серы	газ	(Sp +0,94xH ₂ S),%	_	0.0037	0.0037	0.0037	0.0037	0.0037	_
Доля окислов серы, связываемых летучей золой г		-							
котле		<u>ŋ</u> S1	0.02	-	0.02	0.02	0.02	0,02	•
Доля окислов серы, улавливаемых в золоуловите	ле	ŋ\$2	0	-	0	0	o	0	_
Степень рец-ции дымовых газов (для г/с)			•	12	12	22	19	0	
Степень рец-ции дымовых газов (для т/год)	мазут	r,%	-	-	13	25	0	0	-
Степень рец-ции дымовых газов (для т/год)	газ	r.%	-	16	11	· 11	Ō	0	-
Доля воздуха, подаваемого во II ст. сжигания	газ	%	0	7	7.	7	0	0	-
Фактическая паропроизводительность	1 режим	Дф, т/ч, Гкал/ч	500	355	397	397	180	92	270
Номинальная паропроизводительность		Дн,т/ч, Гкал/ч	500	420	420	420	180	100	270

		Обозначение,	Дымовая тр	уба №3	Д	ымовая труба М	2 5	Дым.труба №4	Дым. труба № 123
Наименование показателя		размерность	E-500-13,8-560	T∏-87	T∏-80	ТП-87	KBFM-180	ПТВМ-100	ГТ(КУ без дожига)
			ст. № 10	ст. № 9	ст. № 6	ст. № 7	ст.№№ 5 - 7	ст.№№ 1 - 4	
Количество ванадия в тонне мазута		Gv,r/T	122.21	-	122.21	122.21	122.21	122.21	
Потери теплоты от механической неполноты									
сгорания топлива	мазут	q4, %	0.02	-	0.02	0.02	0.02	0.02	-
Ширина топки		a _t ,м	14.08	14.08	14.08	14.08	6.48	6.23	-
Глубина топки		b _t ,M	7.522	7.522	7.522	7.522	5.74	6.23	•
Число ярусов горелок		Z _t ,M	1	1 .	1	1	2	_ 2	-
Расстояние между осями соседних горелок по высоте		h _t ,м	-	-		-	2.1	0.8	-
Объем толочной камеры		Vm,м3	2323	2323	2323	2323	763	245	-
Теплонапряжение топ. объема	мазут	g _v , MBt/m³	0.156	_	0.124	0.124	0.303	0.476	-
Теплонапряжение топочного объема, газ	газ	g _v , МВт/м ³	0.156	0.114	0.124	0.124	0.303	0.476	-
Коэф.,хар-ций влияние рец-ции на выброс		d	0	4	4	4	0	0	_
Степень рец-ции дымовых газов (для т/год)	газ	Г, долы		0.16	0.11	0.11	O O	0	-
Степень рец-ции дымовых газов (для т/год)	мазут	Г. доли	0	-	0.13	0.25	. 0	0	-
Степень рец-ции дымовых газов (для г/с)		Г, доли	0	0.12	0.12	0.22	0.19	0	-
Коэф, при очистке конвективных поверхностей		K _{or}	1.5	1.5	1.5	1.5	1.5	1.5	
Коэф.учит.рец-цию дым.газов	мазут	к,	1	-	1.48	1.88	1	1	-
Коэф.учит.рец-цию дым.газов	газ	Κ,	1	1.48	1.48	1.88	1	1	-
Коэффициент учитывающий нагрузку котла	1 режим	Κ _d	1.00	1.41	1.14	1.14	1	1.20	
при среднегодовой наг	рузке	Κ _d	1	1	1	1	1	1	-
С оэффициенты		K _{st} ,K _d	1	1	1	1	1	1	-
Теплонапряжение пов-ти зоны горения	мазут	g 1, МВт/м2	1.26	-	1.00	1.00	1.46	1.19	<u>-</u>
Геплонапряжение пов-ти зоны горения	газ	g 1, MBt/м2	1.26	0.92	1.00	1.00	1,46	1.19	- .
Концентрация бенз(а)пирена:	1 режим	C _{bp} ,mr/m ³	0.0004	0.0012	0.0057	0.0073	0.0038	0.0063	-
при среднегодовой нагрузке	мазут	C _{bp} ,mr/m³	0.0032	-	0.0051	0.0064	0.0038	0.0053	-
при среднегодовой нагрузке	газ	C _{bp} ,mr/m ³	0.0004	0.0009	0.0008	0.0010	0.0005	8000.0	
Гемпература дым.газов на выходе из трубы		T, °C	152 ·	109	147	147	·196	225	110
(оэф. избытка воздуха на выходе из трубы		α	1.05	1.3	1.23	1.23	1.12	1.15	3,7

Наименование показателя	Обозначение,	Дымовая тр	уба №3	Ді	ымовая труба N	25	Дым.труба №4	Дым. труба № 123
Паименование показателя	размерность	E-500-13,8-560	TП-87	TП-80	T∏-87	KBFM-180	ПТВМ-100	ГТ(КУ без дожига)
	<u> </u>	ст. № 10	ст. № 9	_ cr. № 6	ст. № 7	ст,№№ 5 - 7	ст,№№ 1 - 4	
Результаты расчета								
		Дымовая тр	уба №3	Ді	ымовая труба М	25	Дым.тр.№4	Дым. труба № 123
Наименование показателя	Обозн. Размерн.	E-500-13,8-560	TП-87	ТП-80	TП-87	КВГМ-180	ПТВМ-100	
	· ·	ст. № 10	ст. № 9	ст. № 6	ст. № 7	cт.№№ 5 - 7	CT.№№ 1 - 4	ГТ(КУ без дожига)
Диоксид азота (NO2), на котлы:	т/год	318.06	141.78	186.58	186.58	13.33	56.00	981.46
	1 режим, г/с	19.991	23.329				14.860	
На трубу:	1 режим, г/с	43.320		155.268			14.860	52.349
	т/год	459.84		386.49		-	56.00	981.46
Оксид азота (NO), на котлы:	т/год	51.69	23.04	30.32	30.32	2.17	9.10	159.49
На трубу:	т/год	74.72		62.80			9.10	159.49
Окид углерода (СО), на котлы:	т/год	199.21	40.61	43.54	43.54	4.51	18.94	3680.49
	1 режим, г/с	33.318	5.346	15.730	15.730	12.612	6.369	157.047
На трубу:	1 режим, г/с	38.664		44.072		-	6.369	157.047
	т/год	239.82		91.58		-	18.94	3680.49
Сернистый ангидрид (SO ₂),на котлы:	т/год	251.83	4,43	37.62	37.62	28.96	121.87	
	1 режим, г/с	4.664	0.584	178.294	178.294	142.958	72.186	-
На трубу:	1 режим, г/с	5.248		499.547			72.186	•
	т/год	256.26		104.19			121.87	-
Зола мазута (в пересчете на ванадий),	т/год	0.79	-	0.16	0.16	0.14	0.60	-
на котлы:	1 режим, г/с	-	-	0.880	0.880	0.706	0.356	-
На трубу:	1 режим г/с	-	_	2.466			0.356	-
	т/год	0.79		0.47			0.60	-
Бенз(а)пирен, на котлы:	т/год	0.001416	0.000651	0.000697	0.000886	0.000081	0.000493	-
_	1 режим, г/с	0.000058		0.000602	0.000765		0.000269	
На трубу:	1 режим, г/с	0.000180		0.001686			0.000269	•
	m/soð	0.002067		0.001664			0.000493	· •
Углерод черный (сажа), на котлы:	т/год	1.62		0.33	. 0.33	0.28	1.20	
	1 режим, г/с	-	-	1.762	1.762	1.413	0.714	-
На трубу:	1 режим г/с	-		4.938			0.714	-
	т/год	1.62		0.94			1.20	-
Общий органический углерод, на ГТУ	т/год	_	-	-	-	-	_	20.353
	1 режим, г/с	-	-	-	-	-	-	0.868
На трубу:	1 режим г/с	-		-			-	0.868
	т/год	-		-			-	20.353
Объем дымовых газов на котлы:	1 режим м ³ /с	188.62	150.28	170.14	170.14	139.46	76.65	836.46
Объем дымовых газов на трубу:	1 режим м ³ /с	338.89		479.73			76.65	836.46
Температура дымовых газов на трубу:	1 режим <i>Т</i> , ° С	133		161	-		225	110

Таблица Г.4 - Расчет выбросов тяжелых метаплов по проекту (Вариант 2)

НАИМЕНОВАНИЕ ПОКАЗА	ТЕЛЕЙ		ОБОЗНАЧЕНИЕ	Дымовая тр	уба № 3	Дымовая т	руба № 5	Дым. труба № 4	Дым.труба №123
			РАЗМЕРНОСТЬ	E-500-13,8-545	ТП-87	TП-80, TП-87	KBFM-180	ПТВМ-100	ГТ+КУ
				ст.№ 10	ст. № 9	ст. №№ 6 - 8	ст.№5-7	ст. №№ 1-4	
Исходные данные			•			-			
Количество котлов в работе	1 режим		n	1	1	2	1	1	1
Вид расчетного топлива в г/с	•			газ	газ	мазут	мазут	мазут	газ
Расход топлива:			В, т/ч, тыс.м3/ч	38.75	28.27	27.27	- 21.86	11.04	58.10
		газ	В, тыс. м ³ /год	203902.44	59694.25	119381.53	2896.34	12153.31	378533.97
	N	азут	В, т/год	6953.68	-	2821.77	1222.12	5143.27	-
Теплота сгорания топлива:	1	аз	Q ^р _н , МДж/м ³	33.67		33.67	33.67	33.67	33.67
		азут	Q ^р _н , МДж/кг	37.99		37.99	37.99	37.99	
Удельные показатели: Hg	газ		F _i , г/тыс.м ³	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
Hg	мазут		F _i , r/τ	0.05	0.05	0.05	0.05	0.05	_
As	мазут		F _i , r/T	0.02	0.02	0.02	0.02	0.02	
Cd	мазут		F _i , r/τ	0.05	0.05	0.05	0.05	0.05	•
Cr	мазут		F _i , r/T	0.48	0.48	0.48	0.48	0.48	*
Cu	мазут		F _i , r/τ	0.36	0.36	0.36	0.36	0.36	<u> </u>
Ni	мазут	_	F _i , r/τ	44.65	44.65	44.65	44.65	_44.65	<u> </u>
Pb	мазут		F _i , r/T	1.26	1.26	1.26	1.26	1.26	<u>-</u>
Zn	мазут		F _i , r/r	1.62	1.62	1.62	1.62	1.62	•

Результаты расчета

НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ	ОБОЗНАЧЕНИЕ	Дымовая тр	уба № 3	Дымовая т	руба № 5	Дым. труба № 4	Дым.труба №123
	РАЗМЕРНОСТЬ	E-500-13,8-545	ТП-87	ТП-80, ТП-87	КВГМ-180	ПТВМ-100	ГТ+КУ
		ст.№ 10	ст. № 9	ст. №№ 6 - 8	ст.№5-7	ст. №№ 1-4	
Кадмий и его соединения Cd, на котлы:	т/год	0.000348	-	0.000141	0.000061	0.000257	
	г/с, 1 режим	-	-	0.000757	0.000304	0.000153	
На трубу:	г/с, 1 режим	-		0.001061		0.000153	
	т/год	0.000348		0.000202		0.000257	-
Медь и ее соединения Си, на котлы:	т/год	0.002503	-	0.001016	0.000440		
	г/с, 1 режим	-1	-	0.005454	0.002186		
На трубу:	г/с, 1 режим	-		0.007640	-	0.001104	
	т/год	0.002503		0.001456		0.001852	-
Оксиды никеля Ni, на котлы:	т/год	0.310482	-	0.125992	0.054568		
	г/с, 1 режим		-	0.676401	0.271173	0.136927	
На трубу:	г/с, 1 режим	•		0.947574		0.136927	<u> </u>
	m/soð	0.310482		0.180560		0.229647	•
Ртуть и ее соединения Нд, на котлы:	т/год	0.000633	0.000084	0.000308	0,000065		0.000530
<u> </u>	г/с, 1 режим	0.000015	0.000011	0.000757	0.000304	0,000153	0.000023
На трубу:	г/с, 1 режим	0.000026		0.001061		0.000153	0.000023
	т/год	0.000717		0.000373		0.000274	0.000530
Свинец и его неорганические соед. Pb	т/год	0.008762	-	0.003555	0.001540		
на котлы:	г/с, 1 режим			0.019088	0.007652	0.003864	
На трубу:	г/с, 1 режим			0.026740		0.003864	
	т/год	0.008762		0.005095		0.006481	-
Хрома трехвалентные соединения Сг,	т/год	0.003338		0.001354	0.000587	0.002469	
на котлы	г/с, 1 режим	-	-	0.007271	0.002915	0.001472	
На трубу:	г/с, 1 режим	-		0.010187		0.001472	
	т/год	0.003338		0.001941		0.002469	•
Цинк и его соединения Zn, на котлы:	т/год	0.011265		0.004571	0.001980		
	г/с, 1 режим	-		0.024541	0.009839	0.004968	
На трубу:	г/с, 1 режим	-		0.034380		0.004968	•
	m/soð	0.011265		0.006551		0.008332	•
Мышьяк, неорганические соединения As	т/год	0.000139	-	0.000056	0.000024	0.000103	
на котлы:	г/с, 1 режим	<u> </u>	-	0.000303	0.000121	0.000061	
На трубу:	г/с, 1 режим	- -		0.000424		0.000061	<u> </u>
	m/soð	0.000139	-	0.000081		0.000103	•

Таблица Г.5 - Расчет выбросов СОЗ при сжигании топлива в котлах по проекту

()			1.	Труба		Труба		Труб	a № 5	Труба № 123
Наименование показателя	Код	Обозначение,	Формула	Вид то		Видто		Вид то	плива	Вид топлива
Исходные данные		размерность		газ	мазут	газ	мазут	газ	мазуг	газ
Объем сожженного толлива в топливосжигающих				,						
установках		А _{јк} , тыс.м ³ /год, т/год		263596,69	6953.68	12153,31	5143.27	122277.87	4043,90	378533,9
Низшая теплота сгорания топлива		к, ГДж/т		33.67	37.99	33.67	37.99	33.67	37.99	33.6
Удельный показатель выбросов диоксинов/фуранов при сжигании жидкого топлива в топливосжигающих установках класса k	3620	ЕБа, мкг ЭТ/ГДж		0.0005	0.0025	0,0005	0.0025	0.0005	0.0025	0.000
Удельный показатель выбросов полихлорированных буфенилов (ПХБ) при сжигании жидкого топлива в топливосжигающих установках класса k	3920	ЕГ _{РНВ} , мг/ГДж			0.0025		0.0025	5.3555	0,0025	
Удельный показатель выбросов гексахлорбензола (ГХБ) при сжигании жидкого топлива в топливосжигающих установках класса k		ЕF _{GHB} , мг/ГДж		_	0.00025		0.00025		0.00025	
Удельный показатель выбросов индикаторных соединений полициклических ароматических углеводородов (ПАУ) при сжигании жидкого толлива в топливосжигающих установках класса k:	_	ЕҒ _{РАМ} , мг/ГДж					5,55525		0.00020	
бензо(b)флуорантен		ЕГ _{РАН} , мг/ГДж		0.0008	0.2	0.0008	0.2	0.0008	0.2	0.000
бензо(k)флуорантен		ЕГРАН, МГ/ГДЖ		0.0008	0.1	0.0008	0.1	0.0008	0.1	0,000
индено (1,2,3,c,d)пирен		ЕГРАН, МГ/ГДЖ		0.0008	0.2	0.0008	0.2	0.0008	0.2	0.000
Результаты расчета валовых выбросов СОЗ	<u> </u>		<u> </u>				<u> </u>		<u> </u>	
Валовой выброс диоксинов/фуранов	3620	E _d , г ЭТ/год	$E_d = A_{jk} \cdot k_j \cdot EF_d \cdot 10^{-6}$	0.004438	0,000660	0.000205	0.000488	0.002059	0.000384	0.00637
				0.005	098	0.000	693	0.00		0.006373
Заловой выброс ПХБ	3920	Ернв, г/год	E _{PHB} =A _{jk} ·k _j ·EF _{PHB} ·10 ⁻³		0.660426	-	0.488482	_	0.384069	
				0,660	426	0.488	482	0.384	069	•
Заловой выброс ГХБ	830	Е _{сне} , г/год	E _{GHB} =A _{jk} ·k _j ·EF _{GHB} ·10 ⁻³	-	0.066043		0.048848	-	0.038407	
		<u> </u>	· -	0.066	043	0.048	848	0.038	407	
Заловой выброс индикатного соединения ПАУ:		Е _{РАН} , кг/год	E _{PAH} =A _{jk} · k _j · EF _{PAH} · 10 ⁻⁶	-	T I				ì	
бензо(b)флуорантен	727	Е _{РАН} , кг/год		0.007100	0.052834	0.000327	0.039079	0.003294	0,030726	0.010196
				0.059	934	0.039	406	0.034		0.010196
бензо(k)флуорантен	728	Е _{РАН} , кг/год		0.007100	0.026417	0.000327	0.019539	0.003294	0.015363	0.010196
400 - 4				0.033		0.019		0.018		0.010196
пндено (1,2,3,с,d)лирен	729	Е _{РАН} кг/год		0.007100	0.052834	0.000327	0.039079	0.003294	0.030726	0.010196
Расчет выбросов по бена(а)пирену проведен по ТКП 17,08-04-2				0.059	934	0.039	406	0.034	019	0.010196

Таблица Г.6 - Расчет величин выбросов загрязняющих веществ по проекту (Вариант 3)

Паолица 1.0 - Расчет величин выо	·	Обозначение,	Дымовая тр			ымовая труба М	l 25	Дым.труба №4	Дым. труба № 123
Наименование показателя		размерность	E-500-13,8-560	ТП-87	TП-80	TΠ-87	KBFM-180	ПТВМ-100	ГТ(КУ без дожига)
		1	CT. № 10	CT. № 9	ст, № 6	CT. № 7	ст.№№ 5 - 7	ст.№№ 1 - 4	
Исходные данные									
Количество котлов в работе:	1 режим	n	1	1	1	1	1	2	1
Вид расчетного топлива		<u> </u>	мазут	газ	ras	газ	газ	газ	газ
Расход топлива на 1 котел:		В, т/ч, тыс. м ³ /ч	34.16	28.27	27.68	27.68	24.31	6.97	58.10
Объем сухих дымовых газов	мазут	Vdry,м³/кг	13.83 .	<u> </u>			-	-	<u> </u>
Объем сухих дымовых газов	газ	Vdry,m³/m³	-	12.37	12.37	12.37	12.37	12.37	-
Объем сухих дымовых газов α=3,5	газ	Vdry,m³/m³	-		-	-	-		32.41
Концентрация NO _x в сух. дым. газах при α≂1,4	мазут	C _{NOx} , мг/нм ³	200	_			-		-
	газ	C _{NOx} , мг/нм ³		240	300	300	300	300	100
Концентрация СО в сух. дым. газах при α=1,4	мазут	С _{со} , мг/нм ³	250	-		-	-	-	-
	газ	С _{СО} , мг/нм ³	-	55	55	55	55	55	300
Концентрация общего орган. углерода при α=3,5	газ	Cyr., мг/нм ³	-	-	<u>-</u>	-	-	-	150
Доля общего органического углерода			-	_				-	0.01106
Теплота сгорания топлива:	мазут	Qнр, МДж/кг,	37.99	_	-	-		-	-
	ras	Qнр, МДж/м³,	-	33.67	33.67	33.67	33.67	33.67	33.67
Содержание влаги на рабочую массу	мазут	₩°, %	6.18	-	-	-			-
Содержание золы на рабочую массу	мазут	AP, %	0.055	-		-			-
Содержание серы на рабочую массу	мазут	SPHBHX.I %	1.2	-	-	-			
Меркаптановая сера в газе		r/m³	0.016	0.016	0.016	0.016	0.016	0.016	-
Меркаптановая сера в газе		%	0.0023	0.0023	0.0023	0.0023	0.0023	0.0023	-
Сероводород в газе		г/м ³	0.01	0.01	0.01	· 0.01	0.01	0.01	· · <u>-</u>
Сероводород в газе		%	0.00 <u>15</u>	0.0015	0.0015	0.0015	0.0015	0.0015	<u>-</u>
Плотность газа		r/M³	0.684	0.684	0.684	0.684	0.684	0.684	-
Суммарное содержание серы	газ	(Sp +0,94xH₂S),%	0.0037	0.0037	0.0037	0.0037	0.0037	0.0037	<u>-</u>
Доля окислов серы, связываемых летучей золой котле	8	ŋS1	0.02	<u> </u>		-		<u> </u>	<u> </u>
Доля окислов серы, улавливаемых в золоуловите	еле	ŋS2	0	0	0	_0			
Выход СО для г/с	мазут	Ссо, г/кг		-	-	-		_ <u>-</u>	
Степень рец-ции дымовых газов (для г/с)			<u> </u>	12	12	22	0	0	

Наименование показателя		Обозначение,	Дымовая тр	уба №3	Д	ымовая труба і	V25	Дым.труба №4	Дым. труба № 123
		размерность	E-500-13,8-560	TП-87	ТП-80	ТП-87	КВГМ-180	ПТВМ-100	ГТ(КУ без дожига)
			CT, № 10	ст. № 9	ст. № 6	ст. № 7	CT.NºNº 5 - 7	CT.N9N9 1 - 4	
Доля воздуха, подаваемого во II ст. сжигания	газ	%	0	7	7	7	0	0	-
Фактическая паропроизводительность	1 режим	Дф, т/ч, Гкал/ч	500	355	348	348	180	53	270
Номинальная паропроизводительность		Дн,т/ч, Гкал/ч	500	420	420	420	180	100	270
Количество ванадия в тонне мазута		Gv,r/r	122.21		-	-	-	-	
Потери теплоты от механической неполноты									
сгорания топлива Ширина топки	мазут	q4, %	0.02	-	-	<u> </u>	-		-
		at 'Wi	14.08	14.08	14.08	14.08	6.48	6.23	-
Глубина топки	<u> </u>	b _t ,м	7.522	7.522	7.522	7.522	5.74	6.23	•
Число ярусов горелок		Z,,м	1	1	1	1	2	2	
Расстояние между осями соседних горелок по высоте	-	h _L ,M	<u>-</u>	_	_		2.1	0.8	_
Объем топочной камеры		Vm,м3	2323	2323	2323	2323	763	245	··· <u> </u>
Теплонапряжение топ. объема	мазут	g _v , MBr/m³	0.155	-	-		1 700		<u>-</u>
Теплонапряжение топочного объема, газ	газ	g _v , MBt/m³	-	0.114	0.112	0.112	0.298	0.266	
Коэф.,хар-щий влияние рец-ции на выброс		d	0	4	4	4	0	0	
Степень рец-ции дымовых газов (для г/с)		Г, доли	0	0.12	0.12	0.22	0	 0	
Коэф. при очистке конвективных поверхностей		Kor	1.5		-	-	_		
Коэф.учит.рец-цию дым.газов	мазут	К,	1	_	-	-	-	-	
Коэф.учит.рец-цию дым.газов	газ	K,	1	1.48	1.48	1.88	1	1	
Коэффициент учитывающий нагрузку котла	1 режим	Κ _d	1.00	1.41	1.46	1.46	1.00	2.52	
Коэффициенты		K _{st} ,K _{vt}	1	1	1	1	1	1	<u> </u>
Геплонапряжение пов-ти зоны горения	мазут	g 1, МВт/м2	1.25		-		 		
Геплонапряжение пов-ти зоны горения	газ	g 1, MBt/м2	-	0.92	0.90	0.90	1.44	0.66	- <u>-</u>
Концентрация бенз(а)пирена:	1 режим	Сьр,мг/м3	0.0032	0.0012	0.0013	0.0017	0.0005	0.0030	
Гемпература дым.газов на выходе из трубы		T, ºC	152	109	147	147	196	225	110
(оэф. избытка воздуха на выходе из трубы		α	1.05	1.3	1.23	1.23	1.12	1.12	3.7

Наименование показателя	Обозначение,	Дымовая тру	уба №3	Ды	ымовая труба N	25	Дым.труба №4	Дым. труба № 123
Toring Toring Toring Toring	размерность	E-500-13,8-560	ΤΠ-87	TП-80	ТП-87	КВГМ-180	ПТВМ-100	ГТ(КУ без дожига)
		ст. № 10	ст. № 9	ст. № 6	ст. № 7	ст.№№ 5 - 7	CT.N9N9 1 - 4	
Результаты расчета	_			•				
Диоксид азота (NO2), на котлы:	1 режим, г/с	26.271	23.329	28.559	28.559	25.082	14.379	52.349
На трубу:	1 режим, г/с	49.600		82.200			14.379	52.349
Окид углерода (СО), на котлы:	1 режим, г/с	32.838	5.346	5.236	5.236	4.598	2.636	157.047
На трубу:	1 режим, г/с	38.184		15.070			2.636	157.047
Сернистый ангидрид (SO ₂),на котлы:	1 режим, г/с	223.328	0.584	0.572	0.572	0.502	0.288	
На трубу:	1 режим, г/с	223.911		1.645			0.288	_
Зола мазута (в пересчете на ванадий),	1 режим, г/с	1.079	-	-	1	-	-	-
На трубу:	1 режим г/с	1.079		-			_	-
Бенз(а)пирен, на котлы:	1 режим, г/с	0.000423	0.000121	0.000125	0.000159	0.000040	0.000145	-
На трубу:	1 режим, г/с	0.000544		0.000325			0.000145	•
Углерод черный (сажа), на котлы:	1 режим, г/с	1.766		-	-	-	-	-
На трубу:	1 режим г/с	1.766		-			-	•
Общий органический углерод	1 режим, г/с	-	-	_	-	-	-	0.868
На трубу:	1 режим г/с	-		-			-	0.868
Объем дымовых газов на котлы:	1 режим м ³ /с	185.82	150.28	153.79	153.79	138.45	84.28	836.46
Объем дымовых газов на трубу:	1 режим м ³ /с	336.10		446.02	•		84.28	836.46
Температура дымовых газов на трубу:	1 режим Т, ⁰ С	133		162			225	110

Таблица Г.7 - Расчет выбросов тяжелых металлов по проекту (Вариант 3)

НАИМЕНОВАНИЕ ПОКАЗАТЕЛЕЙ		ОБОЗНАЧЕНИЕ	Дымовая тр	уба № 3	Дымовая т	руба № 5	Дым. труба № 4	Дым.труба №123
		РАЗМЕРНОСТЬ	ЮСТЬ E-500-13,8-545		ТП-80, ТП-87	КВГМ-180	ПТВМ-100	ГТ+КУ
			ст.№ 10	ст. № 9	ст. №№ 6 - 8	ст. № 5-7	ст. №№ 1-4	
Исходные данные			<u> </u>				01111212 14	<u> </u>
Количество котлов в работе 1 режим		n	1 1	1	2	1	2	1 -
Вид расчетного топлива в г/с			мазут	газ	газ	газ	газ	газ
Расход топлива:		В, т/ч, тыс.м3/ч	34.162	28.27	27.68	24.31	6.97	58.10
Теплота сгорания топлива:	газ	Q ^Р _н , МДж/м ³	33.67	33.67	33.67	33.67	33.67	33.67
	мазут	Q ^р _н , МДж/кг	37.99	37.99	37.99	37.99	37.99	
Удельные показатели: Hg газ		F _i , г/тыс.м ³	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014
Нд мазут		F _i , r/T	0.05		-	-	- 0.0517	
Аs мазут		F _i , r/T	0.02	-	_		_	
Cd мазут		F _i , r/T	0.05					
Сг мазут		F _i , r/T	0.48		_			
Cu мазут		F _i , r/T	0.36		_			
Ni мазут		F _i , r/T	44.65		_			
Рь мазут		F _i , r/T	1.26		<u> </u>	·····		
. Zn мазут		F _i , r/T	1.62		_			
Результаты расчета								<u> </u>
Кадмий и его соединения Cd, на котлы:		г/с, 1 режим	0.000474				-	
На трубу:		г/с, 1 режим	0.000474	-		· · · · ·		
Медь и ее соединения Сц, на котлы:		г/с, 1 режим	0.003416					<u> </u>
На трубу:		г/с, 1 режим	0.003416					
Оксиды никеля Ni, на котлы:		г/с, 1 режим	0.423708					· · · · · · · · · · · · · · · · · · ·
На трубу:		г/с, 1 режим	0.423708		-			
Ртуть и ее соединения Hg, на котлы:		г/с, 1 режим	0.000474	0.000011	0.000022	0.000009	0.000005	0.00002
На трубу:		г/с, 1 режим	0.000485		0.000031	3,00	0.000005	0.000023
Свинец и его неорганические соед. Pb		г/с, 1 режим	0.011957		-		-	
На трубу:		г/с, 1 режим	0.011957	-	-			
Срома трехвалентные соединения Сг,		г/с, 1 режим	0.004555		-			
la трубу:		г/с, 1 режим	0.004555	-	-			-
Цинк и его соединения Zn, на котлы:		r/c, 1 режим	0.015373	-	-			
łа трубу:		г/с, 1 режим	0.015373	-			 	
Лышьяк, неорганические соединения As		/с, 1 режим	0.000190			<u></u>		-
на трубу:		г/с, 1 режим	0.000190					

Приложение Д на листах 126~140

Расчет выбросов загрязняющих веществ от проектируемого комплекса сооружений по пожарному депо

Проектируемый комплекс сооружений по пожарному депо состоит из:

- пожарного депо на 6 автомобилей;
- блока вспомогательных сооружений;
- тренировочной полосы 50 м:
- волейбольной площадки;
- спортивной площадки;
- тренировочной полосы 100 м с препятствиями.

Режим работы – круглосуточный, количество рабочих дней в году – 365.

- В здании пожарного депо проектируются следующие производственные помещения, из которых могут выделяться загрязняющие вещества в атмосферу:
 - гараж-стоянка на 6 автомобилей;
 - пост технического обслуживания автомобилей (ТО);
 - мастерская поста обслуживания.

В блоке вспомогательных сооружений осуществляется мойка автомобилей. Мойка предназначена для наружной мойки пожарных автомобилей. Пропускная способность мойки – 1 грузовая машина в час.

Основными источниками загрязнения атмосферы являются производственные процессы, связанные с техническим обслуживанием, текущим ремонтом, мойкой автомобилей.

Гараж-стоянка с постом ТО предназначен для хранения и ремонта 6 пожарных машин. Источниками выделения загрязняющих веществ в гараже-стоянке являются машины, перемещающиеся по стоянке.

Расчет выбросов загрязняющих веществ от гаража-стоянки с постом ТО и блока вспомогательных сооружений проводился (см. приложение Е) с использованием программы «АТП-Эколог», версия 3.0.1.13 от 01.09.2008 Соругіght©1995-2008 ФИРМА «ИНТЕГРАЛ» и приведен ниже.

Из помещения гаража-стоянки постом ТО выбросы загрязняющих веществ удаляются с помощью 4-х центробежных вентиляторов (ИВ № 124 - 127).

Из помещения мастерской поста обслуживания выбросы загрязняющих веществ удаляются с помощью центробежного вентилятора (ИВ № 128).

Из помещения блока вспомогательных сооружений (мойка автомобилей) выбросы загрязняющих веществ удаляются с помощью канального вентилятора (ИВ № 129).

Помещение мастерской примыкает к гаражу-стоянке с постом ТО и ТР для удобства проведения ремонтных работ. Мастерская укомплектована оборудованием для проведения мелкого ремонта пожарной техники: механической обработки металлов.

При механической обработке металлов источниками образования и выделения загрязняющих веществ являются станки, при работе которых происходит образование твердых частиц (пыли – абразивной и металлической).

В мастерской поста техобслуживания установлено следующее оборудование:

- станок настольно-сверлильный Einhell BT-BD 501;
- станок точильно-шлифовальный ТШ-1 в комплекте с промышленным пылесосом BF 575. Степень очистки пылесоса 99,5 %.

Расчет выбросов при механической обработке металлов выполнялся в соответствии с ТКП 17.08-02-2006 «Правила расчета выбросов при сварке, резке, механической обработке металлов».

Валовой выброс загрязняющих веществ (т/год) при механической обработке металлов рассчитывается по формуле

$$F = \left(1 - \frac{\eta_z}{100}\right) \cdot K_m \cdot F_i,$$

где F_i — валовое выделение загрязняющего вещества при механической обработке металлов (сплавов) без охлаждения на отдельном источнике выделения, определяемое в соответствии с ТКП 17.08-02-2006 по формуле

$$F_i = 10^{-6} \cdot \text{g} \cdot T$$

где g — удельное количество загрязняющего вещества, выделяющегося при механической обработке металла (сплава) в единицу времени на отдельном источнике выделения, г/ч, принимается по таблицам B.2 - B.6 приложения B;

T — время механической обработки металла (сплава) на отдельном источнике выделения в течение года, ч;

 K_m — поправочный коэффициент, учитывающий условия осаждения образующегося аэрозоля, определяемый по таблице В.1 приложения В:

 η_z - степень очистки газовоздушной смеси, %.

Максимальный выброс загрязняющих веществ (г/с) определяется по формуле

$$G = \left(1 - \frac{\eta_z}{100}\right) \cdot K_m \cdot G_i,$$

где G_i — максимальное выделение загрязняющего вещества, г/с, определяется по формуле

$$G_i = \frac{g}{3600},$$

где g — то же, что в формуле (9.2);

 $K_{\it m}$, $\eta_{\it z}$ – то же, что и в формуле (9.1).

Исходные данные и результаты расчета выбросов при механической обработке металлов в мастерской поста техобслуживания приведены в таблице Д.1.

Таблица Д.1 – Расчет выбросов при механической обработке металлов

		in icokon oopaoorke			
Наименование показателей	Обозначение,	Станок настольно-	Станок точильно-		
	размерность	сверлильный	шлифовальный		
Количество		1	1		
Марка оборудования		Einhell BT-BD 501	ТШ-1		
Удельное количество выделяемых загрязняющих веществ:	g _i , т/ч				
- пыль неорганическая, содержащая SiO₂ менее 70 %		25,2	42,48		
Время механической обработки металла	Т, ч	2920	2920		
Валовое выделение загрязняющих веществ:	F _i , т/год				
- пыль неорганическая, содержащая SiO₂ менее 70 %		0,0736	0,124		
Значение поправочного коэффициента	K _m	0,7	0,8		

Наименование показателей	Обозначение, размерность	Станок настольно-	Станок точильно- шлифовальный		
Валовой выброс загрязняющего вещества:	F, т/год				
- пыль неорганическая, содержащая SiO₂ менее 70 %		0,0515	0,0005		
Максимальное выделение загрязняющих веществ;	G _i , r/c				
- пыль неорганическая, содержащая SiO₂ менее 70 %		0,007	0,0118		
Максимальный выброс загрязняющих веществ:	G, г/с				
- пыль неорганическая, содержащая SiO₂ менее 70 %		0,0049	0,00005		

Из мастерской поста технического обслуживания (ТО) выброс осуществляется с помощью канального вентилятора (источник выбросов ИВ №128).

Валовые и максимальные выбросы предприятия №4, Пождепо Минской ТЭЦ-3, Минск, 2018 г.

Расчет произведен программой «АТП-Эколог», версия 3.0.1.13 от 01.09.2008 Copyright© 1995-2008 ФИРМА «ИНТЕГРАЛ»

Программа основана на следующих методических документах:

- 1. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для автотранспортных предприятий (расчетным методом). М., 1998 г.
- 2. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для авторемонтных предприятий (расчетным методом). М., 1998 г.
- 3. Методика проведения инвентаризации выбросов загрязняющих веществ в атмосферу для баз дорожной техники (расчетным методом). М., 1998 г.
- 4. Дополнения (приложения №№ 1-3) к вышеперечисленным методикам.
- 5. Методическое пособие по расчету, нормированию и контролю выбросов загрязняющих веществ в атмосферный воздух. СПб, 2005 г.

Программа зарегистрирована на: ГП "БелНИПИэнергопром" Регистрационный номер: 01-01-0370

Расшифровка кодов топлива и графы "О/Г/К" для таблиц "Характеристики автомобилей..." Код топлива может принимать следующие значения

- 1 Бензин АИ-93 и аналогичные по содержанию свинца;
- 2 Бензины А-92, А-76 и аналогичные по содержанию свинца;
- 3 Дизельное топливо;
- 4 Сжатый газ;
- 5 Неэтилированный бензин;
- 6 Сжиженный нефтяной газ.

Значения в графе "О/Г/К" имеют следующий смысл

- 1. Для легковых автомобилей рабочий объем ДВС:
- 1 до 1.2 л
- 2 свыше 1.2 до 1.8 л
- 3 свыше 1.8 до 3.5 л
- 4 свыше 3.5 л
 - 2. Для грузовых автомобилей грузоподъемность:
- 1 до 2 т
- 2 свыше 2 до 5 т
- 3 свыще 5 до 8 т
- 4 свыше 8 до 16 т
- 5 свыше 16 т

3. Для автобусов - класс (габаритная длина) автобуса:

- 1 Особо малый (до 5.5 м)
- 2 Малый (6.0-7.5 м)
- 3 Средний (8.0-10.0 м)
- 4 Большой (10.5-12.0 м)
- 5 Особо большой (16.5-24.0 м)

Характеристики периодов года

Период года	· '				
Теплый	Апрель; Май; Июнь; Июль; Август; Сентябрь; Октябрь;	147			
Переходный	Март; Ноябрь; Декабрь;	63			
Холодный	Январь; Февраль;	42			
Всего за год	Январь-Декабрь	252			

Участок №1; Гараж-стоянка на 6 автомобилей, тип - 3 - Теплая закрытая стоянка (гараж), цех №1, площадка №1

Общее описание участка

Пробег автомобиля до выезда со стоянки (км)

- от ближайшего к выезду места стоянки: 0.002

- от наиболее удаленного от выезда места стоянки: 0.010

Пробег автомобиля от въезда на стоянку (км)

- до ближайшего к въезду места стоянки:

0.002

- до наиболее удаленного от въезда места стоянки:

0.010

- среднее время выезда (мин.): 5.0

Сроки проведения работ: первый месяц - 1; последний месяц - 12

Характеристики автомобилей/дорожной техники на участке

Марка автомобиля	_	Место пр-ва	0/Г/К	Тип двиг.	Код [.] топл.	1	Нейтра лизато р	Кол-во в сутки	Кол-во в час
Пожарные машины	Грузовой	СНГ	3	Диз.	3	нет	нет	3.00	1
Пожарные машины	Грузовой	СНГ	3	Карб.	5	нет	нет	3.00	1

Выбросы участка

Код	Название	Макс. выброс	Валовый выброс		
в-ва	вещества	(z/c)	(т/год)		
	Оксиды азота (NOx)*	0.0016892	0.002158		
	В том числе:	•			
0301	*Азота диоксид (Азот (IV) оксид)	0.0013513	0.001726		
0304	*Азот (II) оксид (Азота оксид)	0.0002196	0.000280		
0328	Углерод (Сажа)	0.0000638	0.000082		
0330	Сера диоксид-Ангидрид сернистый	0.0002498	0.000319		
0337	Углерод оксид	0.0398458	0.048709		
2754	Углеводороды предельные алифатического	0.0058980	0.007322		
	ряда С11-С19				

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.007455
Пожарные машины	0.041254
ВСЕГО:	0.048709

Максимальный выброс составляет: 0.0398458 г/с.

```
Здесь и далее:
Расчет валовых выбросов производился по формуле:
M_i = \Sigma ((M_1 + M_2) \cdot N_B \cdot D_D \cdot 10^{-6}), где
M_1- выброс вещества в день при выезде (г);
M_2- выброс вещества в день при въезде (г);
M_1=M_{np} \cdot T_{np} \cdot K_9 \cdot K_{HTD} + M_1 \cdot L_1 \cdot K_{HTD} + M_{XX} \cdot T_{XX} \cdot K_9 \cdot K_{HTD};
Для маршрутных автобусов при температуре ниже -10 град. C:
M_1=M_{np}\cdot (8+15\cdot n)\cdot K_3\cdot K_{HTDNp}+M_1\cdot L_1\cdot K_{HTp}+M_{XX}\cdot T_{XX}\cdot K_3\cdot K_{HTD}
где п - число периодических прогревов в течение суток;
M_2=M_1 \cdot L_2 \cdot K_{HTD}+M_{XX} \cdot T_{XX} \cdot K_9 \cdot K_{HTD};
{
m N_{B^-}} Среднее количество автомобилей данной группы, выезжающих в течение
CYTOK;
D_{p}- количество дней работы в расчетном периоде.
Расчет максимально разовых выбросов производился по формуле:
G_{i} = (M_{np} \cdot T_{np} \cdot K_{9} \cdot K_{hrpnp} + M_{1} \cdot L_{1} \cdot K_{hrp} + M_{xx} \cdot T_{xx} \cdot K_{9} \cdot K_{hrp}) \cdot N' / 1200 \text{ r/c } (*),
С учетом синхронности работы: G_{max}=\Sigma(G_i);
M_{\rm np}- удельный выброс при прогреве двигателя (г/мин.);
T_{np} время прогрева двигателя (мин.);
K_9- коэффициент, учитывающий снижение выброса при проведении
экологического контроля;
K_{\text{нтрПр}}- коэффициент, учитывающий снижение выброса при прогреве двигателя
при установленном нейтрализаторе;
M_1- пробеговый удельный выброс (г/км);
L_1 = (L_{16} + L_{1\pi})/2 = 0.006 км - средний пробег при выезде со стоянки;
L_2 = (L_{26} + L_{2\pi})/2 = 0.006 км - средний пробег при въезде со стоянки;
K_{	ext{	t HTD}}- коэффициент, учитывающий снижение выброса при установленном
нейтрализаторе (пробег и холостой ход);
M_{\rm xx}- удельный выброс автомобиля на холостом ходу (г/мин.);
T_{xx}=1 мин. - время работы двигателя на холостом ходу;
\mathtt{N'} - наибольшее количество автомобилей, выезжающих со стоянки в течение 1
часа, характеризующегося максимальной интенсивностью выезда;
(*) В соответствии с методическим пособием по расчету, нормированию и
контролю выбросов загрязняющих веществ в атмосферный воздух, СПб, 2005 г.
300 сек. - среднее время выезда всей техники со стоянки;
Использовано 20-минутное осреднение;
```

Наименован ие	Mnp	Tnp	Кэ	КнтрПр	Ml	Кнтр	Mxx	Схр	Выброс (г/с)
Пожарные машины (д)	2.800	1.5	1.0	1.0	5.100	1.0	2.800	да	0.0058588
Пожарные машины (б)	18.000	1.5	1.0	1.0	47.400	1.0	13.500	да	0.0339870

Выбрасываемое вещество - 2754 - Углеводороды предельные алифатического ряда C₁₁-C₁₉ Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000968
Пожарные машины	0.006354
BCEFO:	0.007322

Максимальный выброс составляет: 0.0058980 г/с.

Наименован ие	Mnp	Tnp ⁻	Кэ	КнтрПр	Ml	Китр	Mxx	Схр	Выброс (г/с)
Пожарные машины (д)	0.380	1.5	1.0	1.0	0.900	1.0	0.350	да	0.0007712
Пожарные машины (б)	2.600	1.5	1.0	1.0	8.700	1.0	2.200	да	0.0051268

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тоин/год)
Пожарные машины	0.001619
Пожарные машины	0.000538
ВСЕГО:	0.002158

Максимальный выброс составляет: 0.0016892 г/с

				17161. 0.0010	372 1101				
Наименован	Mnp	Tnp	Кэ	$ K$ $\mu mp\Pi p $	Ml	Кнтр	Mxx	Cxp	Выброс (г/с)
ие						-		1	(,
Пожарные машины (д)	0.600	1.5	1.0	1.0	3.500	1.0	0.600	да	0.0012675
Пожарные машины (б)	0.200	1.5	1.0	1.0	1.000	1.0	0.200	да	0.0004217

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000082
BCELO:	0.000082

					7000 1701				
Наименован	Mnp	Tnp	Кэ	$ K\mu mp\Pi_D $	Ml	Кнтр	Mxx	Cxp	Выброс (г/с)
<u>ue</u>		*		<i>p</i>		штр	172.4.4	Слр	Botopoc (2c)
Пожарные машины (д)	0.030	1.5	1.0	1.0	0.250	1.0	0.030	да	0.0000638
Manifer (A)									•

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000242
Пожарные машины ВСЕГО:	0.000077
BCEI U:	0.000319

Наименован	Mnp	Tnp	Кэ	КнтрПр	7/1	<i>V</i>	1.6		
ие		1.00	ДЭ	Kampiip	MI	Кнтр	Mxx	Схр	Выброс (г/с)
Пожарные машины (д)	0.090	1.5	1.0	1.0	0.450	1.0	0.090	да	0.0001897
Пожарные машины (б)	0.028	1.5	1.0	1.0	0.180	1.0	0.029	да	0.0000601

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8

Валовые выбросы

David Die Die Det	
Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.001295
Пожарные машины	0.000431
ВСЕГО:	0.001726

Максимальный выброс составляет: 0.0013513 г/с.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13

Валовые выбросы

Виловые выоросы	
Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000211
Пожарные машины	0.000070
ВСЕГО:	0.000280

Максимальный выброс составляет: 0.0002196 г/с.

Участок №2; Пост ТО автомобилей, тип - 10 - Участок техобслуживания и текущего ремонта автомобилей, цех №1, площадка №1

Общее описание участка Подтип - зона ТО и ТР с тупиковыми постами

Расстояние от ворот помещения до поста ТО и ТР (км): 0.005 Наибольшее количество автомобилей, въезжающих в зону и выезжающих из зоны ТО и ТР в течение 1 часа: 2 Сроки проведения работ: первый месяц - 1; последний месяц - 12

Характеристики автомобилей/дорожной техники на участке

Марка автомобиля		Место пр-ва	0/Г/К	Тип двиг.	Код топл.	Экоконт роль	Нейтрал изатор	Кол-во (mn)
Пожарные машины	Грузовой	СНГ	3	Диз.	3	нет	нет	3
Пожарные машины	Грузовой	СНГ	3	Карб.	5	нет	нет	. 3

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (г/с)	Валовый выброс (m/год)
	Оксиды азота (NOx)*	0.0002597	0.000004
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0002078	0.000003
0304	*Азот (II) оксид (Азота оксид)	0.0000338	4.9E-7
0328	Углерод (Сажа)	0.0000132	1.4E-7
0330	Сера диоксид-Ангидрид сернистый	0.0000388	5.5E-7
0337	Углерод оксид	0.0076317	0.000095
2754	Углеводороды предельные алифатического	0.0011075	0.000033
	ряда С11-С19	0.0011015	0.00017

Примечание:

NO - 0.13

 $NO_2 - 0.80$

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000013
Пожарные машины	0.000082
ВСЕГО:	0.000095

Максимальный выброс составляет: 0.0076317 г/с.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

^{1.} Коэффициенты трансформации оксидов азота:

^{2.} Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Подтип - зона ТО и ТР с тупиковыми постами

 $M_{Ti} = \Sigma ((2M_1 \cdot S_T + M_{\pi p} \cdot T_{\pi p}) \cdot N_{T\kappa} \cdot 10^{-6})$, где

 $N_{\text{Tr}}-$ количество ТО и ТР, проведенных в течение года для автомобилей данной группы.

Расчет максимально разовых выбросов производился по формуле:

 $G_T = (M_1 \cdot S_T + 0.5 \cdot M_{np} \cdot T_{np}) \cdot N'_T / 3600$ г/с, где

 M_1 - пробеговый удельный выброс (г/км);

 S_{T^-} расстояние от ворот до поста ТО и ТР (км);

 M_{np} - удельный выброс при прогреве двигателя (г/мин.);

 $T_{np}=1.5$ мин. - время прогрева двигателя;

 N'_{T} - наибольшее количество автомобилей, въезжающих

в зону и выезжающих из зоны ТО и TP в течение 1 часа.

Наименован	Mnp	MI	NTĸ	Max	Выброс (г/с)
ие		-			
Пожарные машины (д)	2.800	5.100	3		0.0011808
Пожарные машины (б)	18.000	47.400	3	*	0.0076317

Выбрасываемое вещество — 2754 — Углеводороды предельные алифатического ряда $C_{11}\text{-}C_{19}$ Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000002
Пожарные машины	0.000012
ВСЕГО:	0.000014

Максимальный выброс составляет: 0.0011075 г/с.

Наименован ие	•	Ml	NTĸ	Max	Выброс (г/с)
Пожарные машины (д)	0.380	0.900	3		0.0001608
Пожарные машины (б)	2.600	8.700	3	*	0.0011075

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000003
Пожарные машины	9.3E-7
ВСЕГО:	0.000004

Максимальный выброс составляет: 0.0002597 г/с

	Makenmanishi Bisopot Cottabinet: 0.0002597 F/C.							
Наименован	Mnp	Ml	NΤκ	Max	Выброс (г/с)			
ие								
Пожарные машины (д)	0.600	3.500		3 *	0.0002597			
Пожарные машины (б)	0.200	1.000		3	0.0000861			

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	1.4E-7
ВСЕГО:	1.4E-7.

Максимальный выброс составляет: 0.0000132 г/с.

Наименован ие 🕠		Ml	NΤκ	Max	Выброс (г/с)
Пожарные машины (д)	0.030	0.250	3	*	0.0000132

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	4.2E-7
Пожарные машины	1.3E-7
ВСЕГО:	5.5E-7

Максимальный выброс составляет: 0.0000388 г/с.

Наименован	Mnp	Ml	NTK	Max	Выброс (г/с)
ие	_		2,210	11144	Botopoc (2/c)
Пожарные машины (д)	0.090	0.450	3	*	0.0000388
Пожарные машины (б)	0.028	0.180	3		0.0000122

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000002
Пожарные машины	
ВСЕГО:	
Bell 0.	0.000003

Максимальный выброс составляет: 0.0002078 г/с.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13 Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	3.6E-7
Пожарные машины ВСЕГО:	1.2E-7
Mouseware 2	4.9E-7

Максимальный выброс составляет: 0.0000338 г/с.

Участок №1; Блок вспомогательных сооружений, тип - 11 - Участок мойки автомобилей, цех №2, площадка №1

Общее описание участка Подтип - с тупиковыми постами

Расстояние от ворот помещения до моечной установки (км): 0.002

Максимальное количество автомобилей,

1

обслуживаемых мойкой в течение часа:

Сроки проведения работ: первый месяц - 1; последний месяц - 12

Характеристики автомобилей/дорожной техники на участке

Марка автомобиля		Место пр-ва	0/Г/К	Тип двиг.	Код топл.	Экоконт роль	Нейтрал изатор	Кол-во
Пожарные машины	Грузовой	СНГ	3	Диз.	. 3	нет	нет	3
Пожарные машины	Грузовой	СНГ	3	Карб.	5	нет	нет	3

Выбросы участка

Код в-ва	Название вещества	Макс. выброс (2/c)	Валовый выброс (т/год)
	Оксиды азота (NOx)*	0.0000872	0.000001
	В том числе:		
0301	*Азота диоксид (Азот (IV) оксид)	0.0000698	0.000001
0304	*Азот (II) оксид (Азота оксид)	0.0000113	1.6E-7
0328	Углерод (Сажа)	0.0000044	4.8E-8
0330	Сера диоксид-Ангидрид сернистый	0.0000130	1.8E-7
0337	Углерод оксид	0.0025527	0.000032
2754	Углеводороды предельные алифатического	0.0003708	0.000032
	ряда С11-С19	3.0003700	0.00000

Примечание:

1. Коэффициенты трансформации оксидов азота:

NO - 0.13

 $NO_2 - 0.80$

2. Максимально-разовый выброс углеводородов (код 0401) может не соответствовать сумме составляющих из-за несинхронности работы разных видов техники, либо расчет проводился для различных периодов года.

Расшифровка выбросов по веществам:

Выбрасываемое вещество - 0337 - Углерод оксид Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	0.000004
Пожарные машины	
ВСЕГО:	0.000028
	0.000032 1

Максимальный выброс составляет: 0.0025527 г/с.

Здесь и далее:

Расчет валовых выбросов производился по формуле:

Подтип - с тупиковыми постами

 $M_i = \Sigma ((2M_1 \cdot S + M_{np} \cdot T_{np}) \cdot N_{\kappa} \cdot 10^{-6})$, где

 N_{κ^-} количество автомобилей данной группы, обслуживаемых мойкой в течение года.

Расчет максимально разовых выбросов производился по формуле:

 $G=(2M_1 \cdot S + M_{np} \cdot T_{np}) \cdot N' / 3600$ г/с, где

 M_{1} - пробеговый удельный выброс (г/км);

S- расстояние от ворот помещения до моечной установки (км);

 $M_{mp}-$ удельный выброс при прогреве двигателя (г/мин.);

 T_{np} =0.5 мин. - время прогрева двигателя;

N' - максимальное количество автомобилей, обслуживаемых мойкой в течение 1 часа.

Наименован	Mnp	Ml	. Nĸ	Max	Выброс (г/с)
ие					
Пожарные машины (д)	2.800	5.100	· · · · · · · · · · · · · · · · · · ·	3	0.0003946
Пожарные машины (б)	18.000	47.400		3 *	0.0025527

Выбрасываемое вещество - 2754 - Углеводороды предельные алифатического ряда C_{11} - C_{19}

Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	5.8E-7
Пожарные машины	0.000004
ВСЕГО:	0.000005

Максимальный выброс составляет: 0.0003708 г/с.

Наименован ие		Ml	Nκ	Max	Выброс (г/с)	
Пожарные машины (д)	0.380	0.900		3	0.0000538	
Пожарные машины (б)	2.600	8.700	<u></u>	*	0.0003708	

Выбрасываемое вещество - Оксиды азота (NOx) Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	9.4E-7
Пожарные машины	3.1E-7
BCETO:	0.000001

Максимальный выблос составляет о осоорого на

Наименован ие	Мпр	Ml	Nκ	Max	Выброс (г/с)	
Пожарные машины (д)	0.600	3.500	······································	*	0.0000872	
Пожарные машины (б)	0.200	1.000		3	0.0000289	

Выбрасываемое вещество - 0328 - Углерод (Сажа) Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	4.8E-8
ВСЕГО:	4.8E-8

Максимальный выброс составляет: 0.0000044 г/с.

Наименован ие	i	Ml	Nĸ	Max	Выброс (г/с)
Пожарные машины (д)	0.030	0,250	3	*	0.0000044

Выбрасываемое вещество - 0330 - Сера диоксид-Ангидрид сернистый Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	1.4E-7
Пожарные машины	4.4E-8
BCETO:	1.8E-7

Максимальный выброс составляет: 0.0000130 г/с.

Наименован		MI	Nκ	Max	Выброс (г/с)
ие					
Пожарные машины (д)	0.090	0.450		*	0.0000130
Пожарные машины (б)	0.028	0.180	3	<u> </u>	0.0000041

Трансформация оксидов азота Выбрасываемое вещество - 0301 - Азота диоксид (Азот (IV) оксид) Коэффициент трансформации - 0.8 Валовые выбросы

Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные мащины	7.5E-7
Пожарные машины	2.5E-7
ВСЕГО:	0.000001

Максимальный выброс составляет: 0.0000698 г/с.

Выбрасываемое вещество - 0304 - Азот (II) оксид (Азота оксид) Коэффициент трансформации - 0.13

Валовые выбросы

DESTORBE ABIOPOCE	
Марка автомобиля или дорожной техники	Валовый выброс (тонн/год)
Пожарные машины	1.2E-7
Пожарные машины	4.1E-8
ВСЕГО:	1.6E-7

Максимальный выброс составляет: 0.0000113 г/с.

Суммарные выбросы по предприятию

Код в-ва	Название вещества	Валовый выброс (т/год)
0301	Азота диоксид (Азот (IV) оксид)	0.001730
0304	Азот (II) оксид (Азота оксид)	0.000281
0328	Углерод (Сажа)	0.000082
0330	Сера диоксид-Ангидрид сернистый	0.000320
0337	Углерод оксид	0.048836
2754	Углеводороды предельные алифатического	0.007340
	ряда С11-С19	

<u>аблица Е.1 -</u>		чник выделения					метры				<u> </u>			1		-					
	загрязняющих веществ			чник выб т	OCOB		чника роса ≥	Параметрь	я газовоздушно источника вы		выходе из	_	Загрязняющее вещество	Пред	глагаемый в прои Притагаемый в прои	екте нормати	В				
Наименование производства, цех	ество		на карте	вание	OR.		устья,	объем	нормативное			код	наименование	мг/м ³ , при		от источник	а выброса				
·	у ИСО Наименовани	у наименование наименование		енаименование - наименование - наим		количество наименование -		наименование	количество	высотам	диаметр устья,	м ³ /с, при реальных условиях	содержание кислорода, %	темпера- тура ⁰ С	скорость м/с			млм , при нормальных условиях	мг/м ³ , по ЭкоНиП	r/c	т/год
отельный цех	1	E-500-13,8-560 ст. № 10	3	труба	1	100	7	<u>338.89</u> 336.10	6	<u>133</u> 133	8.81 8.73	301	Азот (IV) оксид (азота диоксид)	<u>газ - 188</u> мазут - 217	<u>газ - 191</u> мазут - 218.9	43.320 49.600	459:8				
	1	ТП-87 ст. № 9					l					304	Азот (II) оксид (азота оксид)	_		-	74.72				
												330	Сера диоксид (Ангидрид сернистый)	<u>газ - 35</u> мазут - 1705	<u>газ - 35</u> мазут - 200	<u>5.248</u> 223.911	256.2				
												337	Углерод оксид (окись углерода)	<u>газ - 167.7</u> мазут - 167.1	<u>газ -272,8</u> мазут - 246	38.664 38.184	239.8				
												2902	Твердые частицы*	мазут - 25	мазут - 25	3.306	2.75				
												124	Кадмий и его соединения (в пересчете на кадмий)**			0.000474	0.00034				
												140	Медь и ее соединения (в пересчете на медь)**			0.003416	0.00250				
	"			!								164	Никель оксид (в пересчете на никель)**			0.423708	0.31048				
												183	Ртуть и ее соединения Hg (в пересчете на ртуть)**			0.000026 0.000485	0.00071				
												184	Свинец и его неорганические соединения (в пересчете на свинец)**			0.011957	0.00876				
												228	Хрома трёхвалентные соединения (в пересчете на хром)**			0.004555	0.00333				
			·						,		, [229	Цинк и его соединения (в пересчете на цинк)**		-	0.015373	0.01126				
												325	Мышьяк, неорганические соединения (в пересчете на мышьяк)**			0.000190	0.00013				
,												328	Углерод чёрный (Сажа)**			1.766	1.6				
,											ſ	703	Бенз/а/пирен (3,4-Бензпирен)**			0.000180 0.000544	0.00206				
•											Ì	2904	Мазутная зола теплоэлектростанций**			1.079	0.7				
											ļ	727	Бензо(b)флуорантен			-	5,99*10				
											ľ	728	Бензо(к)флуорантен			-	3,35*10				
												729	Индено(1,2,3,c,d)пирен			-	5,99*10				
											ľ	830	Гексахлорбензол			-	6,6*10				
•	i				ĺ	٠					ſ	3620	Диоксины/фураны		,		5,1*10				
			-									3920	Полихлорированные бифенилы				6,6*1				

Наименование производства, цех	Источник выделения загрязняющих веществ			Источник выбросов			зметры очника броса ≥	Параметры газовоздушной смеси на выходе из источника выбросов				Загрязняющее вещество		Предлагаемый в проекте норматив			
	количество	наименование	номер на карте	наименование	количество	высота,м	диаметр устья,	объем м³/с, при	нормативное содержание кислорода, %	темпера-	скорость м/с	код		мг/м ³ , при	мг/м³, по	от источника выброса	
	КОЛ			наимен			диамет	реальных условиях				_		нормальных условиях	мг/м°, по ЭкоНиП	r/c	т/год
Сотельный цех	4	ПТВМ-100 ст.№ 1-4	4	труба	1	100	6	84.28 76.65	6	225	<u>2.98</u> 2.71	301	Азот (IV) оксид (азота диоксид)	<u>газ - 300</u> мазут - 350	<u>газ - 300</u> мазут - 350	<u>14.379</u> 14.860	56.00
				1		ŀ	1	!				304	Азот (II) оксид (азота оксид)				9.10
									:			330	Сера диоксид (Ангидрид сернистый)	<u>газ - не норм.</u> мазут - 1701	<u>газ - не норм.</u> мазут - 850	<u>0.288</u> 72,186	121.87
												337	Углерод оксид (окись углерода)	<u>газ - 55</u> мазут - 150	<u>газ - 300</u> мазут - 300	<u>2.636</u> 6.368	18,94
				l '			1	,				2902	Твердые частицы*	мазут - 40	мазут - 40	1.219	2.050
												124	Кадмий и его соединения (в пересчете на кадмий)**			0.000153	0.000257
												140	Медь и ее соединения (в пересчете на медь)**			0.001104	0.001852
												104	Никель оксид (в пересчете на никель)**			0.136927	0.229647
													Ртуть и ее соединения Hg (в пересчете на ртуть)**			0.000005 0.000153	0.000274
											<u> </u>		Свинец и его неорганические соединения (в пересчете на свинец)**			0.003864	0.006481
						; ;				:			Хрома трёхвалентные соединения (в пересчете на хром)**			0.001472	0,002469
												229	Цинх и его соединения (в пересчете на цинх)**			0.004968	0.008332
												325	Мышьяк, неорганические соединения (в пересчете на мышьяк)**	•		0:000061	0.000103
		İ		1	, 1			į l			ſ	328	Углерод (Сажа)**			0.714	1.20
												703	Бенз/а/пирен (3,4-Бензпирен)**			0.000145 0.000269	0.000493
			ļ									2904	Мазутная зола теплоэлектростанций **			0.356	0.60
	ļ	l			, 1	,	, [, [Бензо(b)флуорантен			_	0,039*10 ⁻³
		ľ	İ		. [, 1	, l		1			Бензо(к)флуорантен			-	0,02*10 ⁻³
				ľ	.	ĺ	, J	. [L		Индено(1,2,3,с,d)пирен				0,039*10 ⁻³
	j					1	, J	. [L		Гексахлорбензол				0,049*10*
	Ì						, [. !			Ļ		Диоксины/фураны				0,0007*10*
						_	1		_		ľ	3920	Полихлорированные бифенилы			-	0,49*10 ⁻⁵

Наименование производства, цех	Источник выделения загрязняющих веществ		Источник выбросов			исто	метры чника іроса ≥	Параметры газовоздушной смеси на выходе из источника выбросов				Загрязняющее вещество		Предлагаемый в проекте норматив			
	количество	наименование	номер на карте	аименование	оличество	высота,м	диаметр устъя,	объем м³/с, при реальных условиях	нормативное содержание кислорода, %	темлера- тура ⁰ С	скорость м/с	1 1	мг/м ³ , при нормальных условиях	мг/м³, по ЭкоНиП	от источни	ка выброса	
отельный цех	1	ТП-80 ст.№6 ТП-87ст.№7	5	труба	1	180	9.6	446.02	6	<u>6.16</u>	<u>162</u>	301	Азот (IV) оксид (азота диоксид)	газ - 300	газ - 300	<u>82.200</u>	386.4
	1 3	КВГМ-180		1	1			479.73	j	6.63	161			мазут - <u>528.5</u>	мазут - 350	155.268	
	·	CT.№5 - 7		,								304	Азот (II) оксид (азота оксид)	·			62.8
		01.1425 - 7										330	Сера диоксид (Ангидрид сернистый)	<u>газ - не норм.</u>	<u>газ - не норм.</u>	<u>1.645</u>	104.1
												337	Углерод оксид (окись углерода)	мазут - 1701 <u>газ - 55</u>	мазут - 850 300	499.547	04.50
													уттород околд (окою уттерода)	мазут - 150	мазут - 350	<u>15.070</u> 44.072	91.58
ſ												2902	Твердые частицы*	мазут - 40	мазут - 40	8.435	1.60
												124	Кадмий и его соединения (в пересчете на кадмий)**			0.001061	0.00020
												140	Медь и ее соединения (в пересчете на медь)**			0.007640	0.00145
												164	Никель оксид (в пересчете на никель)**			0.947574	0.1805
												183	Ртуть и ее соединения Hg (в пересчете на ртуть)**			0.000031 0.001061	0.00037
												184	Свинец и его неорганические соединения (в пересчете на свинец)**			0.026740	0.00509
												228	Хрома трёхвалентные соединения (в пересчете на хром)**			0.010187	0.00194
												229	Цинк и его соединения (в пересчете на цинк)**			0,034380	0.00655
												325	Мышьяк, неорганические соединения (в пересчете на мышьяк)**			0.000424	0.00008
	- 1	ł										328	Углерод (Сажа)**			4,938	0.9
												703	Бенз/а/пирен (3,4-Бензпирен)**			0.000334 0.001686	0.00166
												2904	Мазутная зола теплоэлектростанций**			2.466	0.4
	- 1												Бензо(b)флуорантен				0,034*10
	-]										Бензо(к)флуорантен				0,019*10
	- 1				[729	Индено(1,2,3,c,d)пирен				0,034*10
ŀ	-		ŀ		1		i i					830	Гексахлорбензол		-		0,038*10
		1	1		-	ŀ		[ľ			3620	Диоксины/фураны				0,002*10
							1	i				3920	Полихлорированные бифенилы		-		0,38*10

.

		чник выделения агрязняющих веществ	Исто	чник выб	росов	исто	метры чника броса	Параметры	ı газовоздушно источника в		выходе из		Загрязняющее вещество	Пре	длагаемый в про	екте нормати	18
Наименование производства,	<u>8</u>		карте	. Ze			устья, м				,	код	наименование				
цех	количест	наименование	뗲	Нован	эство	 ≅.	тр уст	объем м ³ /с, при	нормативное	темпера-	скорость			мг/м ³ , при	мг/м³, по	от источни	ка выброса
	КОЛ		номер	наименование	количество	высота, м	Диаметр	реальных условиях	содержание кислорода, %	тура ⁰С	M/c			нормальных условиях	ЭкоНиП	r/c	т/год
Блок ПГУ	1	ГТУ+КУ	123	труба	1	60	7.0	836.46	15	110	21.75	183	Ртуть и ее соединения Hg (В		0.000023	0.000530
								1				301	пересчете на ртуть) Азот (IV) оксид (азота диоксид)	газ - 100	газ - 100	52,349	981.460
					ľ		1				l 1	304	Азот (II) оксид (азота диоксид)	183 - 100	- 183 - 100	52,349	159.490
ı				1		1		l			1 1	337	Углерод оксид (окись углерода)	газ - 300	газ - 300	157.047	3680.49
					i		İ				l 1		Общий органический углерод	ras - 150	ras - 150	0.868	20.353
				1				ļ				703	Бенз/а/пирен (3,4-Бензпирен)			0.000002	0.000050
								1			[727	Бензо(b)флуорантен			-	0,01*10-
						ľ				1	l {	728	Бензо(k)флуорантен] -	0,01*10
						1			ļ			729	Индено(1,2,3,c,d)пирен		1	- 1	0.01*10
						ĺ	1				l Ì	3620	Диоксины/фураны			-	0.006*10*
Пождепо	1	Вытяжка	124	труба	1	7.8	0,5	1.532		20	7.81	301	Азот (IV) оксид (азота диоксид)	†	1	0.00045	0.00072
		гаража-									l [304	Азот (II) оксид (азота оксид)			0.000073	0.000093
		стоянки		!			ł				[328	Углерод (Сажа)			0.000021	0.000027
				i								330	Сера диоксид (Ангидрид сернистый)			0.000083	0.00011
		1	i				,					337	Углерод оксид (окись углерода)	-	1	0.01328	0.01620
											<u> </u>	2754	Углеводороды предельные		 	<u> </u>	5,010,0
ļ											<u> </u>	2/54	алифатического ряда С11-С19			0.001966	0.00244
	1	Вытяжка	125	труба	1	7.8	0.5	1.532		20	7.81	301	Азот (IV) оксид (азота диоксид)		1	0.00045	0.00072
		гаража-		i								304	Азот (II) оксид (азота оксид)			0.000073	0.000093
		стоянки] [328	Углерод (Сажа)		<u> </u>	0.000021	0.000027
												330	Сера диоксид (Ангидрид сернистый)			0.000083	0.00011
				İ				1				337	Углерод оксид (окись углерода)	-	 	0.01328	0.01620
								i			i i		Углеводороды предельные			0.0.02.0	0.01020
		•						•				2754	алифатического ряда С11-С19	•		0.001966	0,00244
1	1	Вытяжка	126	труба	1	7.8	0.32	1.667		20	21.39	301	Азот (IV) оксид (азота диоксид)			0.00045	0,00072
		гаража-										304_	Азот (II) оксид (азота оксид)			0.000073	0.000093
		стоянки					,					328	Углерод (Сажа)			0.000021	0.000027
							i					330	Сера диоксид (Ангидрид сернистый)			0.000083	0.00011
i	i											337	Углерод оксид (окись углерода)		 	0.000083	0.01620
		1	1										Углеводороды предельные	<u> </u>	†	0.01020	0.01020
												2754	алифатического ряда С11-С19	1		0.001966	0.00244

5		Исто зя	Источник выделения загрязняющих веществ	Источ	Источник выбросов		Параметры источника выброса		араметры	Параметры газовоздушной смеси на выходе из	й смеси на г	зыходе из		Загрязняющее вещество	Пред	Предлагаемый в проекте норматив	екте норматив	
Б даторы и м гил в объем и м гил в в в довети в в в довети в в в довети в в в довети в в в довети в м в в довети в м в м гил в в довети в м в м в довети в м в м в довети в м в м в довети в м в м в м в м в м в м м в м м в м м в м	Наименование			это	әи			M ,Rd		a publication of the control of the	900000		КОД	наименование				
Peanhelm Courte Peanhelm Courte Peanhelm P	хэр	тээниі	наименование	ня кэ	нован	овтое	M,6		объем 1³/с, при	нормативное	темпера-	скорость			мг/м³, при	Mr/M ³	от источника	выброса
9 0.16 0.225 20 11.20 301 Asor (II) оксид (азота диоксид) 0.000208 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		коъ		номер	нзиме	колин	высот			содержание кислорода, %		M/C			нормальных условиях	Эконип	2/1	т/год
0.20 0.125 20 3.98 Азот (II) оксид (азота оксид) 0.000039 0.20 0.125 20 3.98 Углевод оксид (окись углерода) 0.000103 0.50 1.389 20 3.01 Азот (IV) оксид (азота диоксид) 0.0001107 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000013 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000011 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000011 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000001 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000001 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000001 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000001 0.000 1.389 2754 <td< td=""><td></td><td>•</td><td>Вытяжка ТО</td><td>127</td><td>труба</td><td>-</td><td>-</td><td>0.16</td><td>0.225</td><td></td><td>20</td><td>11.20</td><td></td><td>Азот (IV) оксид (азота диоксид)</td><td></td><td></td><td>0.000208</td><td>0.000003</td></td<>		•	Вытяжка ТО	127	труба	-	-	0.16	0.225		20	11.20		Азот (IV) оксид (азота диоксид)			0.000208	0.000003
0.20 0.125 20 3.98 Углерод (Сажа) 0.000013 0.20 0.125 20 3.98 Углерод оксид (окись углерода) 0.0007632 0.20 0.125 20 3.98 Углерод оксид (окись углерода) 0.000107 0.50 1.389 20 7.08 30.1 Азот (IV) оксид (азота диоксид) 0.000070 3.90 20 7.08 30.1 Азот (IV) оксид (азота диоксид) 0.000070 3.01 Азот (IV) оксид (азота диоксид) 0.000071 0.000071 3.20 7.08 30.1 Азот (IV) оксид (азота диоксид) 0.000071 3.30 Сера диоксид (окись углерод (Сажа) 0.000013 3.31 Углерод оксид (окись углерода) 0.000013 2754 Яглерод оксид (окись углерода) 0.000013 3.37 Углерод оксид (окись углерода) 0.000013 2754 Яглерод оксид (окись углерода) 0.000013 3.37 Углерод оксид (окись углерода) 0.000013 3.37 Углерод оксид (окись углерода) 0.000013 3.3														Азот (II) оксид (азота оксид)			0.000034	4.9*10-7
0.20 0.125 20 3.98 Серимстый) 0.000039 0.50 1.389 20 7.08 307 Углеводороды предельные дожемд (окись углерода) 0.000010 0.50 1.389 20 7.08 307 Азот (II) оксид (азота диоксид) 0.000070 3.50 2.754 Азот (II) оксид (азота диоксид) 0.0004950 0.0004950 0.50 1.389 20 7.08 307 Азот (II) оксид (азота диоксид) 0.000071 3.50 Серинстый 330 Серинстый 0.000013 0.000013 3.37 Углерод оксид (окись углерода) 0.000013 0.000371 4 эастицы, в состав которых входит суммарное количество загрязаняощих веществ, имеющих твердое агрегатное состояние, органического и 0.000371														Углерод (Сажа)			0.000013	1.4*10-7
0.20 0.125 2754 Углевод ороды предельные алифатического ряда С11-С19 0.001632 0.20 0.125 20 3.98 2754 Алифатического ряда С11-С19 0.001107 0.50 1.389 20 7.08 301 Aзот (IV) оксид (зота диоксид) 0.004950 0.50 1.389 20 7.08 301 Aзот (IV) оксид (зота диоксид) 0.000070 326 Углерод (Сажа) 330 Сера диоксид (Ангидрид 0.000013 330 Сериктый) 330 Сериктый) 0.000013 337 Углерод оксид (окись углерода) 0.000013 337 Углерод оксид (оксись углерода) 0.000013 337 Углерод (оксись углерода) 0.000013 337 Углерод (о													E75-0	Сера диоксид (Ангидрид			0000	1
0.20 0.125 3.98 Углеводороды предельные алифатического ряда С11-С19 0.001107 0.50 0.125 3.98 Пыль неорганическая, содержащая менее 70% SiO2 0.004950 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.004950 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000011 328 Углерод (Сажа) 330 Сера диоксид (Ангидрид 0.000013 330 Серинстый) 337 Углерод оксид (окись углерода) 0.000013 337 Углерод оксид (окись углерода) 0.000013 337 Углерод оксид (окись углерода) 0.000013 2754 Алифатического ряда С11-С19 0.000371 337 Углеводороды иредельные 0.000371 337 Углеводороды иредельные 0.000371 337 Углеводороды иредельные 0.000371														Углерод оксид (окись углерода)			0.000039	0.00095
0.20 0.125 20 3.98 Пыль неорганическая, содержащая менее 70% SiO2 0.004950 0.50 1.389 20 7.08 301 Азот (IV) оксид (азота оксид) 0.000070 3.50 1.389 20 7.08 301 Азот (II) оксид (азота оксид) 0.000070 3.20 2.0 7.08 301 Азот (II) оксид (азота оксид) 0.000011 3.20 2.0 7.08 37 Углерод (Сажа) 0.000013 3.30 Сернистый) 337 Углерод оксид (окись углерода) 0.000013 3.37 Углерод оксид (окись углерода) 0.000013 3.7 Углевод оксид (окись углерода) 0.000013 3.7 Углевод оксид (окись углерода) 0.000013 3.7 Аглевод оксид (окись углерода) 0.000013 3.7														Углеводороды предельные				
0.50 1.389 2908 Пыль неорганическая, содержащая менее 70% SiO2 0.000070 0.000070 0.000070 0.000070 0.00 0.50 1.389 20 7.08 301 Asor (IV) оксид (азота диоксид) 0.000011 1,6 3.34 Asor (II) оксид (азота оксид) 0.000013 1,8 0.0000011 1,6 3.39 Сера диоксид (Ангидрид 0.000013 1,8 0.0000013 1,8 337 Углерод оксид (окись углерода) 0.000013 1,8 0.002553 0.00 337 Углерод оксид (окись углерода) 0.0002553 0.00 0.000371 0.00 4 частицы, в состав которых входит суммарное количество загрязняющих веществ, имеющих твердое агретатное состояние, органического и 0.000371 0.00		,	Britawina	400	29.19.	,	$^{+}$	00,	10,0					алифатического ряда С11-С19			0.001107	0.000014
0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000070 0.000070 0.00 324 Азот (II) оксид (азота оксид) 328 Углерод (Сажа) 0.000011 1,6 328 Углерод (Сажа) 330 Сера диоксид (Ангидрид 0.000013 1,8 4-к Серинстый) 337 Углерод оксид (окись углерода) 0.000013 1,8 337 Углевод оксид (окись углерода) 0.0000353 0.00 337 Углевод оксид (окись углерода) 0.000353 0.00 4-к Углевод оксид (окись углерода) 0.000371 0.00 37 Углевод оксид (окись углерода) 0.000371 0.00 4-к Углевод оксид (окись углерод (окись углер		H .	мастерской	071	rpyca	-	_	0.20	0.125		50	3.98		Пыль неорганическая,				
0.50 1.389 20 7.08 301 Азот (IV) оксид (азота диоксид) 0.000070 324 Азот (II) оксид (азота оксид) 328 Углерод (Сажа) 0.000001 328 Углерод (Сажа) 0.000004 330 Сера диоксид (Ангидрид 0.000013 337 Углерод оксид (окись углерода) 0.000013 337 Углевод ороды предельные 0.000553 2754 Алифатического ряда С11-С19 0.000371 ких процессах и выбрасываемых в атмосферный возлух: 0.000371	L		поста			+	1	-						содержащая менее 70% SiO2			0.004950	0.052
324 Азот (II) оксид (азота оксид) 0.000011 328 Углерод (Сажа) 0.000004 330 Сера диоксид (Ангидрид 0.000013 сернистый) 337 Углерод оксид (окись углерода) 0.000013 337 Углерод оксид (окись углерода) 0.000553 2754 Яглеводорды предельные 0.000371 их процессах и выбрасываемых в атмосферный возлух: 0.000371	БЛОК		Вытяжка	129	труба	_		0.50	1.389		20	7.08		Азот (IV) оксид (азота диоксид)			0.000070	0.000001
328 Углерод (Сажа) 0.000004 330 Сера диоксид (Ангидрид 0.000013 2754 Углерод оксид (окись углерода) 0.000553 2754 Загрязняющих веществ, имеющих твердое агрегатное состояние, органического и выбрасываемых в атмосферный воздух: 0.000371	BCIOMOLAT.		участка											Азот (II) оксид (азота оксид)			0.000011	1,6*10-7
337 Сера диоксид (Ангидрид (окись углерода) 0.000013 (сернистый) 0.000553 (сернистый) 0.002553 (сернистый) 0.002553 (сернистый) 0.002553 (сернистый) 0.002553 (сернистый) 0.002553 (сернистый) 0.002553 (сернистый) 0.000371 (серницы) в состав которых входит суммарное количество загрязняющих веществ, имеющих твердое агрегатное состояние, органического и ответствующих веществ, имеющих твердое агрегатное состояние, органического и ответство загрязняющих веществ, имеющих твердое агрегатное состояние, органического и ответство загрязняющих веществ, имеющих твердое агрегатное состояние, органического и ответство загрязняющих веществ, имеющих твердое агрегатное состояние, органического и ответство загрязняющих веществ, имеющих твердое агрегатное состояние, органического и ответственного сернистиции отв	сооружении		моики							88				Углерод (Сажа)			0.000004	4,8*10-8
Cephiotishid Cephiotishid Cephiotishid Co000013 Cephiotishid Cephiotishid Co000013 Cephiotishid Co000013 Cephiotishid			автоморилеи											Сера диоксид (Ангидрид				
337 Углерод оксид (окись углерода) 0.002553 2754 Углеводороды предельные эчастицы, в состав которых входит суммарное количество загрязняющих веществ, имеющих твердое агретатное состояние, органического и ких процессах и выбрасываемых в атмосферный возлух: 0.000371												_	П	сернистый)			0.000013	1,8*10-7
4 Углеводороды предельные агразирязняющих веществ, имеющих твердое агрегатное состояние, органического и выбрасываемых в атмосферный воздух:							_							Углерод оксид (окись углерода)			0.002553	0.000032
4 частицы, в состав которых входит суммарное количество загрязняющих веществ, имеющих твердое агрегатное состояние, органического и ких процессах и выбрасываемых в атмосферный воздух:														Углеводороды предельные				
з частицы, в состав которых вх ких процессах и выбрасываем]				-	+							алифатического ряда С11-С19			0.000371	0.000005
	неорганическог	и с Эко го прои	схождения, образ	зующихс	эрмируютс эя при техн	нологич	рые част еских пр	гицы, в с роцесса:	состав котс х и выбрас	рых входит су ываемых в ат	имарное кс мосферный	эличество; воздух;	загрязнян	ощих веществ, имеющих твердое аг,	регатное состоя	ние, органическо	ого и	

Приложение Ж на листах 146 - 208 Результаты расчетов рассеивания по проекту

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 7, ВАРИАНТ 1

Вариант расчета: Приземный слой

Расчет проведен на зиму

Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость превышения в пределах 5%)	5 M/c

Параметры источников выбросов

Учет	№ пл.	Nº	№ ист.	. Наименование источника	Bap.	Тил	Высота	Пизмо	тр Объем	I Cuon a		 -			1	_		
при	1	цеха				••••	ист. (м)	VCTLa (M) FBC	Скорс		Темп.	Коэф.	Коорд.	Коорд.	Коорд.	Коорд.	Ширина
расч.					ľ		11011 (1117	yoran (м) (куб.м/с		M/C) I	TBC (°C)	рел.	Х1-ос. (м)	Ү1-ос. (м)	Х2-ос. (м)	Y2-ос. (м)	источ.
	0	1	4	Дымовая труба	1	1	100,0		00 18		784	400	 _		 	ļ		(M)
		Код		Наименование вещества			зыброс, (і		<u>оој то</u> Выброс, (т/г	<u>ol 6'5</u>		166	1,0	303,0				0,00
		01:		Кадмий и его соединения		•	0.000145		0,0000000) F	Лето			Um 3	Вима: Ст/Г		Um	_
		01	40	Медь и его соединения (в пересч	ете на		0.001000		0,0000000	1		0,000			0,00			
				медь)			0.001000	,0	0,0000000	1		0,000	1 656	,7 4,4	0,00	0 1 695,8	4,7	
		010		Никель оксид			0.129199	17	0.0000000	1		0.008	1 050	7 44				
		018		Ртуть (Ртуть металлическая	()		0.000155		0,0000000	1		0,000			0,00			
		018		Свинец и его соединения			0.003646		0,0000000	1		0,000			0,00			
		022	28	Хрома трехвалентные соединения	я (в пе-		0.001000		0,0000000	1		0,002			0,00	, -		
				ресчете на хром)				-	0,000000	•		0,000	1 000	,7 4,4	0,00	0 1 695,8	4,7	
		022	29	Цинк и его соединения (в пересч	эте на		0.000000	0	0.0000000	1		0,000	1 656	7 4,4	0.00	0 46050	4.7	
		00/		цинк)					-,	•		0,000	1 030	1, 4,4	0,00	0 1 695,8	4,7	
		030		Азота диоксид (Азот (IV) окси	д)	4	11.660000	00	0,0000000	1		0,099	1 656,	7 4,4	0,09	4 1 695,8	4,7	
		032 032		Мышьяк и его соединения			0.000000	0	0,0000000	1		0,000	1 656,		0,00			
		032		Углерод (Сажа)			0.673000	-	0,0000000	1,5		0,004	1 449		0,00			
		033		Сера диоксид (Ангидрид сернис	тый)		42.25000		0,0000000	1		0,169	1 656		0,16			
		070	13	Углерод оксид			1.070000		0,0000000	1		0,001	1 656,		0,00			
		290		Бенз/а/пирен (3,4-Бензпирен) _		0.000209		0,0000000	1		0,025	1 656,		0,02			
Г_ Т	0	11		Мазутная зола теплоэлектроста	нций		0.39 <u>3000</u>		0,0000000	1,5		0,017	1 449,		0,01			
		Код в	<u>5</u>	Дымовая труба	1 _	1	180,0	9,6		10,233	317	188,8	1,0	533,0		533,0		0,00
		012		Наименование вещества			ыброс, (г		Выброс, (т/г)	F	Лето	: Cm/ПДI	K Xm		има: Ст/П		Um	0,00
		014		Кадмий и его соединения			0.0010640		0,0000000	1		0,000	3 494,		0,00			
		0.4	•	Медь и его соединения (в пересче	те на	,	0.008000	כ	0,0000000	1		0,000	3 494,	26	0,00		6,3	
		016	4	медь) Никель оксид			0004404	_							•		_,-	
		018		Ртуть (Ртуть металлическая)			0.9504460	_	0,0000000	1		0,010	3 494,		0,01	3 565,8	6,3	
		018		Свинец и его соединения			0.0010830	-	0,0000000	1		0,000	3 494,		0,00	3 565 8		
		022		Хрома трехвалентные соединения	(B 50		0.0268210		0,0000000	1		0,003	3 494,		0,00			
				ресчете на хром)	(Bile-	,	0.0102000	,	0,0000000	1		0,000	3 494,	26	0,00	3 565,8	6,3	
		022	9	Цинк и его соединения (в пересче	те на	(0.0340000	`	0.0000000			0.000						
				пинк)		•	,,0040000	,	0,0000000	1		0,000	3 494,2	26,	0,00	3 565,8	6,3	
		030		Азота диоксид (Азот (IV) оксид	.)	20	6.580000	m	0,0000000	1		0.004	2.404.6				_	
		032		Мышьяк и его соединения	,		.0000000		0.0000000	1		0,091 0,000	3 494,2 3 494,2	2 6	0,08			
		0328		Углерод (Сажа)			.9540000		0.0000000	1,5		0,000	3 494,2		0,000	,-		
		0330		Сера диоксид (Ангидрид сернист	ый)		44.357000		0,0000000	1		0,003	3 494,2		0,009			
		0337		Углерод оксид			3.3700000		0.0000000	i		0.001	3 494,2		0,220 0,00°		6,3	
		0703		Бенз/а/пирен (3,4-Бензпирен)		0	.0013720		0.0000000	1		0.030	3 494,2		0,00			
- O/ -		2904		Мазутная зола теплоэлектростан	ций	2	.8870000		0,0000000	1,5		0,024	3 057,5		0,023		6,3 6,3	
%	이	1		Вытяжка ЦЦР (сварочный	1	1	6,5	0,5		1,543	17	20	1,0	472,0	-130,0	472,0		0.00
				юст)		- 1	· [-,-	1 3,333	1,010	``'	20	1,0	412,0	-130,0	472,0	-130,0	0,00
		Код в-		Наименование вещества		Вь	іброс, (г/с	c) B		F	Лето:	Ст/ПДК	Xm	Um 3u		116		
		0301		Азота диоксид (Азот (IV) оксид)		.0032000		0,0000000	1	JICTU.	0,023	37,1	0,5	ма: Cm/ПД		Um	
		0337		Углерод оксид			.0036920		0,0000000	i		0,023	37,1	0,5 0,5	0,041 0,002		0,7	
		2908	: П	ыль неорганическая, содержащая	менее	0	.0001481		0,0000000	3		0,003	18,5	0,5 0,5	0,002		0,7 0,7	
				70% SiO2						-		-,	.0,0	0,0	0,000	14,3	J, /	
				i i														

0/	1 0	- 41	270,	- 4 - 0.5									
%	1 4	4	37 Вытяжка РММ (сварочный 1	1 3,0	0,40 0,206	1,6393	20	1,0	350,0	-91,0	350,0	-91,0	0,00
<u> </u>	<u> </u>	Код в-ва	пост)					_					
		0301	Наименование вещества Азота диоксид (Азот (IV) оксид)	Выброс, (г/с)	Выброс, (т/г)	F Лето:			Um Зима:			Um	
		0337	Углерод оксид	0.0032000 0.0036920	0,0000000	1	0,142	17,1	0,5	0,160	17,1	0,8	
		2908	Пыль неорганическая, содержащая мене		0,0000000	1	0,008	17.1	0,5	0,009	17,1	0,8	
		2000	70% SiO2	0.0001461	0,0000000	3	0,016	8,6	0,5	0,019	8,6	8,0	
	0	1 7	123 Дымовая труба 1	1 60,0	7,00 650,6	16,9055	103	1,0	580,0	-276,0	580,0	-276,0	0,00
		Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:			Um Зима:			Um	0,00
		0183	Ртуть (Ртуть металлическая)	0.0000202	0.0000000	1	0.000	1 603.4	8,1	0.000	1 631.6		
		0301	Азота диоксид (Азот (IV) оксид)	44.7050000	0,0000000	1	0,135	1 603,4		0,130	1 631,6	- 1 -	
		0337	Углерод оксид	134.1150000	0,0000000	1	0,020	1 603,4		0.019	1 631.6	8,7	
		0410	Метан	67.0580000	0,0000000	1	0,001	1 603,4	8,1	0,001	1 631,6	8,7	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000019	0,0000000	1	0,000	1 603,4		0,000	1 631,6	8,7	
+	<u> 0</u>	2	3 Дымовая труба 1	1 100,0	7,00 338,89	8,80588	133	1,0	425,0	-152,0	425,0	-152,0	0,00
		Код в-ва 0183	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:		Xm	Um Зима;	Cm/ПДК	Xm	Um	
		0301	Ртуть (Ртуть металлическая)	0.0000260	0,0000000	1	0,000	1 847,2	5,1	0,000	1 896,3	5,4	
		0330	Азота диоксид (Азот (IV) оксид) Сера диоксид (Ангидрид сернистый)	43.3200000	0,0000000	1	0,082	1 847,2	5,1	0,078	1 896,3	5,4	
		0337	Углерод оксид	5.2480000 38.6640000	0,0000000	1	0,005	1 847,2		0,005	1 896,3	5,4	
		0703	Уллерод оксид Бенз/а/пирен (3,4-Бензпирен)	0.0001800	0,0000000 0,000000	1	0,004	1 847,2	5,1	0,003	1 896,3	5,4	
+	0	2	4Дымовая труба 1	1 100.0	6,00 71,79	2,53905	0,017 225	1 847,2 1,0	5,1 303,0	0,016	1 896,3		0.00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	<u> 2,00900</u> F Лето:		Xm		-374,0 Ст/ПДК	303,0 Xm	-374,0	0,00
		0183	Ртуть (Ртуть металлическая)	0.0000050	0,0000000	1 7610.	0.000	1 389,5	3,5	0,000	1 417,5	Um 3,6	
		0301	Азота диоксид (Азот (IV) оксид)	12.2490000	0.0000000	i	0,042	1 389,5	3,5	0,000	1 417.5	3,6	
		0330	Сера диоксид (Ангидрид сернистый)	0.2450000	0,0000000	1	0,000	1 389,5	3.5	0,000	1 417 5	3.6	
		0337	Углерод оксид	2.2460000	0,0000000	1	0.000	1 389.5	3,5	0,000	1 417 5	3,6	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000420	0,00000000	_ 1	0,007	1 389,5	3,5	0,007	1 417 5	3.6	
+	0	2	5 Дымовая труба 1	1 180,0	9,60 440,7	6,08851	162	1,0	533,0	-162,0	533.0	-162,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0183	Ртуть (Ртуть металлическая)	0.0000310	0,0000000	1	0,000	3 003,8	4,7	0,000	3 082,5	5	
		0301 0330	Азота диоксид (Азот (IV) оксид)	81.2120000	0,0000000	1	0,048	3 003,8	4,7	0,046	3 082,5	5	
		0337	Сера диоксид (Ангидрид сернистый) Углерод оксид	1.6250000	0,0000000	1	0,000	3 003,8	4,7	0,000	3 082,5	5	
		0703	Утперод оксид Бенз/а/пирен (3,4-Бензпирен)	14.8890000 0.0003340	0,0000000	1	0,000	3 003,8	4,7	0,000	3 082,5	5	
+	0		23/Дымовая труба 1	1 60,0	0,00000000 7,00 836,46	<u>1</u> 21,73498	0,010 110	3 003,8	4,7	0,009	3 082,5	5 070 0	0.00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	<u>21,73430 </u> F Лето:	 Сm/ПДК	1,0 Xm		-276,0	580,0	-276,0	0,00
		0183	Ртуть (Ртуть металлическая)	0.0000230	0.0000000	1	0,000	1 784,2	Um Зима: 9.6	Ст/ПДК 0,000	Xm 1 807,5	Um	
		0301	Азота диоксид (Азот (IV) оксид)	52.3490000	0,0000000	i	0,128	1 784,2	9,6	0,000		10,2 10,2	
		0337	Углерод оксид	157.0470000	0,0000000	i	0.019	1 784,2	9.6	0,124	•	10,2	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000020	0,0000000	1	0,000	1 784,2	9,6	0,000	•	10,2	
+	0	2 1	24 Вытяжка гаража-стоянки 1	1 7,8	0,50 1,532	7,80241	20	1,0	629,0	79,0	629,0	79,0	0,00
			(пождепо)					''-]	55,5	- (,,,	323,3	. 0,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0.001	57,8	0,7	0,001	75,6	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
		0328 0330	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	50,6	0,7	0,000	66,1	1,1	
		0337	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	•
		2754	Углерод оксид Углеводороды предельные алифатическо-	0.0132820	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
		m, 07	го ряда С11-С19	0.0019660 ·	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	

		•				•		•					
+	C		125 Вытяжка гаража-стоянки 1 (пождепо)	1 7,8	0,50 1,532	7,80241	20	1,0	625,0	82,0	625,0	82,0	0,00
		Код в-в 0301		Выброс, (г/с)	Выброс, (т/г)	F Лето	: Cm/ПДК	Xm	Úт Зима	: Cm/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0,001	57,8	0,7	0,001	75.6	1,1	
		0304	Азот (II) оксид (Азота оксид) Углерод (Сажа)	0.0000730	0,0000000	1	0,000	57,8	0,7	0,000	75.6	1,1	
		0330	Утперод (Сажа) Сера диоксид (Ангидрид сернистый)	0.0000210	0,0000000	1,5	0,000	50,6	0,7	0,000	66.1	1,1	
		0337	Углерод оксид	0.0000830 0.0132820	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
		2754	Углеводороды предельные алифатическо	- 0.0019660	0,0000000 0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
			го ряда С11-С19	- 0.0013000	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
+	0	<u> </u>	126 Вытяжка гаража-стоянки 1 (пождепо)	1 7,8	0,32 1,667	21,39068	20	1,0	617,0	88,0	617,0	88,0	0,00
		Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:	: Ст/ПДК	Xm	Um Зима	: Cm/ПДК	Xm	11	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0.001	99.9	1,1	. Спиндк 0,001	100.4	Um 1,1	
		0304 0328	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
		0320	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	87,4	1,1	0,000	87.9	1,1	
		0337	Сера диоксид (Ангидрид сернистый) Углерод оксид	0.0000830	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
		2754	Углеводороды предельные алифатическо-	0.0132820 · 0.0019660	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
			го ряда С11-С19	0.0019000	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
+	0	2	127 Вытяжка гаража-стоянки 1 (пождело)	1 7,8	0,16 0,225	11,19058	20	1,0	604,0	83,0	604,0	83,0	0,00
		Код в-ва	· ····································	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	0 (5.6)	- V-	<u> </u>	
		0301	Азота диоксид (Азот (IV) оксид)	0.0002080	0.0000000	1	0.001	44,5	0,5	: Cm/ПДК 0.001		Um	
		0304	Азот (II) оксид (Азота оксид)	0.0000340	0,0000000	1	0,000	44.5	0,5	0,000		0,6 0,6	
		0328 0330	Углерод (Сажа)	0.0000130	0,0000000	1,5	0.000	38.9	0,5	0.000		0,6	
		0337	Сера диоксид (Ангидрид сернистый)	0.0000390	0,0000000	1	0,000	44,5	0,5	0,000		0,6	
		2754	Углерод оксид Углеводороды предельные алифатическо-	0.0076320	0,0000000	1	0,002	44.5	0,5	0,003		0,6	
+	0		го ряда С11-С19	0.0011070	0,0000000	1	0,001	44,5	0,5	0,002		0,6	
_ • _	<u></u>	<u></u>	128 Вытяжка мастерской поста 1	1 6,0	0,20 0,125	3,97887	20	1.0	590,0	88,0	590,0	88,0	0,00
		2908	Наименование вещества Пыль неорганическая, содержащая менее	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:		Xm	Um	-1
			70% SiO2	0.0049500	0,0000000	2	0,073	25,7	0,5	0,156		0,5	
+	0		129 Вытяжка участка мойки 1 автомобилей (пождепо)	1 8,0	0,50 1,389	7,07412	. 20	1,0	645,0	155,0	645,0	155,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um:	
		0301 0304	Азота диоксид (Азот (IV) оксид)	0.0000700	0,0000000	1	0,000	52,4	0,6	0.000		1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000110	0,0000000	1	0,000	52,4	0,6	0,000		1,1	
		0326	Углерод (Сажа) Сера диоксид (Ангидрид сернистый)	0.0000040	0,0000000	1,5	0,000	45,9	0,6	0.000		1,1	
			оера диоксид (Ангидрид сернистый)	0.0000130	0,0000000	1	0,000	52,4	0.6	0,000		1,1	
		0337	VERSON SVOKE	0.000000						0,000	1 1,0	1.4	
		0337 2754	Углерод оксид Углеводороды предельные алифатическо-	0.0025530 0.0003710	0,0000000	1	0,000 0.000	52,4 52.4	0,6 0,6	0,000		1,1	

·

Выбросы источников по веществам

Вещество: 0183 Ртуть (Ртуть металлическая)

Nº пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето		-	Зима	
					()		Cm/ПДК	Xm	Um.(м/с)	Cm/ПДК	Xm	Um (м/c)
0	1	4	1	-	0.0001550	1	0,0002	1656,70	4,3844	0,0001	1695,84	4,6520
0	1	5	1	1	0.0010830	1	0,0002	3494,24	6,0080	0,0002	3565,84	6,3263
0	1	123	1	-	0.0000202	1	0,0000	1603,38	8,1379	0,0000	1631,56	8,7327
0	2	3	1	+	0.0000260	1	0,0000	1847,22	5,0588	0,0000	1896,26	5,4356
0	2	4	1	+	0.0000050	1	0,0000	1389,48	3,4661	0,0000	1417,49	3,6261
0	2	5	1	+	0.0000310	1	0,0000	3003,83	4,6805	0,0000	3082,52	4,9814
0	2	123	1	+	0.0000230	1	0,0000	1784,23	9,6133	0,0000	1807,49	10,2041
Итог	o:				0.0000850		0,0001			0,0001		

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Nº	Nº	Тип	Учет	Выброс	F	· ··ooia Hiio	Лето	, ,	_ · ·/_	Зима	
пл.	цех	ист.			(r/c)							
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
_0	1	5	_ 1	-	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	36	1	%	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0_	1	37	1	%	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875
_0	1	123	1	-	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	_2	3_	1	+	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	_ 4	1_	+	12.2490000	1	0,0415	1389,48	3,4661	0,0399	1417,49	3,6261
0	2	5	1	+	81.2120000	1	0,0483	3003,83	4,6805	0,0459	3082,52	4,9814
0	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	1	+	0.0004500	_1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	125	1	+	0.0004500	7	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	_2	126	1	+	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	
_ 0	2	127	1	+	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	
0	_2	129	1	+	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	
Итого):				189.1380280		0,4707			0,4940		· · · · · ·

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

				2014	<u> </u>	-	ра дискси,	4 (2011 p.M)	лин серпи	CIDIN)		
NΩ.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	4		Лето			Зима	·
	_				(,		Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
_ 0	1	4	1_	-	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	_ 5	1		1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0_	2	3	_1	+	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	0.2450000	1	0,0004	1389,48	3,4661	0,0004	1417,49	3,6261
0	2	5	1	+	1.6250000	1	0,0005	3003,83	4,6805	0,0005	3082,52	4,9814
0	2	124	1_	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	
0_	2	125	_1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	
0	2	126	1	+	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	
0	2	127	1	+	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	
0	2	129	1	+	0.0000130	1	0,0000	52,42	0,5748	0,0000		
Итого	o:				7.1183010		0,0063		_ ·	0,0060		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Вещество: 0337 Углерод оксил

№ πл.	Nº цех	№ ист.	Тип	Учет	Выброс (r/c)	F		Лерод ок Лето		-	Зима	
							Cm/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/c)
0	1	4	1_	_	11.0700000	1	0,0013	1656,70	4,3844	0,0013	1695,84	4,6520
0	1	5_	_1	-	53.3700000	1	0,0012	3494,24	6,0080	0,0011	3565,84	6,3263
0	1_	<u>3</u> 6	1	%	0.0036920	1	0,0013	37,05	0,5000	0,0024	28,68	
0	1	37	1	%	0.0036920	1	0,0082	17,10	0,5000	0,0092	17,15	
0	1	123	_1	-	134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	
0	2	_3	1	+	38.6640000	1	0,0037	1847,22	5,0588	0,0035		
0_	2	_4_	1_	+	2.2460000	1	0,0004	1389,48	3,4661	0,0004	1417,49	

Итого	o:				212.9034150		0,0409			0,0411		
0	2	129	1	+	0.0025530	1	0,0005	52,42	0,5748	0,0003	71,89	1,0729
0	2	127	1	+	0.0076320	1	0,0018	44,46	0,5000	0,0025	37,66	0,5898
0	2	126	1	+	0.0132820	1	0,0009	99,86	1,1230	0,0009	100,40	1,1498
0	2	125	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	124	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	123	1	+	157.0470000	1	0,0192	1784,23	9,6133	0,0186	1807,49	10,2041
0	2	5	1	+	14.8890000	1	0,0004	3003,83	4,6805	0,0004	3082,52	4,9814

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
	цех				(170)		Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0002090	1	0,0025	1656,70	4,3844	0,0024	1695,84	4,6520
0	1	5	1	-	0.0013720	1	0,0030	3494,24	6,0080	0,0029	3565,84	6,3263
0	1	123	1		0.0000019	1	0,0000	1603,38	8,1379	0,0000	1631,56	8,7327
0	2	က	1	+	0.0001800	1	0,0017	1847,22	5,0588	0,0016	1896,26	5,4356
0	2	4	_1	+	0.0000420	1	0,0007	1389,48	3,4661	0,0007	1417,49	3,6261
0	2	5	1	+	0.0003340	1	0,0010	3003,83	4,6805	0,0009	3082,52	4,9814
0	2	123	1	+	0.0000020	1	0,0000	1784,23	9,6133	0,0000	1807,49	
Итог	o:				0.0005580		0,0034			0,0033		

Выбросы источников по группам суммации

Группа суммации: 6009

			-					суммаци					
Nº	Nº	Nº	Тип	Учет	Код	Выброс	F		Лето			Зима	
пл.	цех	ист.			в-ва	(r/c)		0/00/	- VI. 1	11 ((-)	A (0.0)	- , ,	14 2 1 3
								Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	<u>Um (м/с)</u>
0		4	1		0301	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	4	_1_	-	0330	142.2500000	1	0,1688	<u>1656,70</u>	4,3844	0,1612	1695,84	4,6520
<u> </u>	1 1	5	_ 1	-	0301	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1_1_	5	1_	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	1	36	1	%	0301	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0	_ 1	37	1	%	0301	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875
0	1	123	_1_	-	0301	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	0301	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	3	1	+	0330	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	_2	4	1	+	0301	12.2490000	1	0,0415	1389,48	3,4661	0,0399	1417,49	3,6261
0	_ 2	4	1	+	0330	0.2450000	1	0,0004	1389,48	3,4661	0,0004	1417,49	3,6261
0	2	5	1	+	0301	81.2120000	1	0,0483	3003,83	4,6805	0,0459	3082,52	4,9814
0	2	5	1	+	0330	1.6250000	1	0,0005	3003,83	4,6805	0,0005	3082,52	4,9814
0	2	123	1	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	1_	+	0301	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	
0	2	124	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0301	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	_125	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0301	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	126	1	+	0330	0,0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0301	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	0,5898
0	2	127	1	+	0330	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0301	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
0	2	129	1	+	0330	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	
Итого	:					196.2563290	$\neg \neg$	0,4771			0,5000	,001	

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	дельно Допу Концентрац	*Поправ. коэф. к ПДК/ОБУ В	Фоновая концентр.		
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
0183	Ртуть (Ртуть металлическая)	ПДК м/р	0.0006000	0.0006000	1	Нет	Нет
	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да

0703 Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с * 10	0.0000050	0.0000500	1	Да	Да
6009 Группа сумм. (2) 301 330	Группа		-	1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

№ поста	Наименование				Координать	поста
4					х	у
1 <u>y</u> _	1.Кедышко, 45					580
Код в-ва	Наименование вещества	T	Фонс	вые концен	трации	
	<u> </u>	Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330 0337	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013
0703	Углерод оксид Бенз/а/пирен (3,4-Бензпирен)	0.257 7.7E-7	0.257 7.7E-7	0.257	0.257	0.257
2904	Мазутная зола теплоэлектростанций	1.7E-7 1E-7	1.7E-7	7.7E-7 1E-7	7.7E-7 1E-7	7.7E-7
	. Тростенецкая, 4	16-7	15-1		-4185	1 <u>E</u> -7
					· · · · · · · · · · · · · · · · · · ·	
Код в-ва	Наименование вещества			вые концен		
0124	Voganus u acc	<u>Штиль</u>	Север	Восток	Юr	Запад
0124 0184	Кадмий и его соединения Свинец и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6
0301	Свинец и его соединения Азота диоксид (Азот (IV) оксид)	8.9E-5 0.073	8.9E-5	8.9E-5	8.9E-5	8.9E-5
0325	Мышьяк и его соединения	0.073 1E - 7	0.073 1E-7	0.073 1E-7	0.073 1E-7	0.073
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	1E-7 0,028
0337	Углерод оксид	0.871	0.871	0.028	0.026	0.028
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1.75L-0
3 ул	. Каховская, 72				-5200	516
						<u>.</u>
Код в-ва	Наименование вещества	III-u-		вые концен		
0124	Кадмий и его соединения	<u>Штиль</u>	Север	Восток		Запад
0184	Свинец и его соединения	8.2E-5	1.6E-6 8.2E-5	1.6E-6 8.2E-5	1.6E-6 8.2E-5	1.6E-6
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.22-3	0.073	8.2E-5 0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	<u>1E-7</u>	1E-7
<u>4 yı </u>	. Жилуновича, 3	-			-730	63
Код в-ва	Наименование вещества	T	Фоно	вые концен	трании	<u> </u>
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1,6E-6
0184 0301	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0325	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081
0330	Мышьяк и его соединения Сера диоксид (Ангидрид сернистый)	1E-7	1E-7	1E-7	1E-7	1E-7
0337	Углерод оксид	0.028	0.028	0.028	0.028	0.028
0703	Бенз/а/пирен (3,4-Бензпирен)	1.315 1.75E-6	1.315 1.75E-6	1.315 1.75E-6	1.315	1.315
2904	Мазутная зола теплоэлектростанций	1E-7	1.75E-6 1E-7	1./3E-6 1E-7	1.75E-6 1E-7	1.75E-6 1E-7
5 ул	. Скорины, 18			<u> </u>	2044	453
Код в-ва	Наименование вещества	Hilmana	Фоно	вые концен		
0124	Кадмий и его соединения	Штиль 1.6E-6	Север	Восток	10r	Запад
0184	Свинец и его соединения	8.2E-5	1.6E-6 8.2E-5	1.6E-6 8.2E-5	1.6E-6 8.2E-5	1.6E-6
0301	Азота диоксид (Азот (IV) оксид)	0.22-3	0.073	0.25-5	6.2E-5 0.073	8.2E-5 0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	0.073 1E-7	0.073 1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций Селицкого, 33	<u>1</u> E-7	1E-7	1E-7	1E-7	1E-7
					4562	

Код в-ва

0124

0184

Наименование вещества

Кадмий и его соединения

Свинец и его соединения

ŧ	_	^
ι	. ``	2
1	_	-

Фоновые концентрации

Юг

1.6E-6

7.9E-5

Запад

1.6E-6

7.9E-5

Восток

1.6E-6

7.9E-5

Штиль

1.6E-6

7.9E-5

Север

1.6E-6

7.9E-5

0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
7 ул	. Тростенецкая, 10Б				-3840	-176

Код в-ва	Наименование вещества	Фоновые концентрации					
	·	Штиль	Север	Восток	Юг	Запад	
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6	
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5	
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073	
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7	
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028	
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871	
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6	
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7	
8 rip.	Партизанский, 66 А				-345	-101	

Код в-ва	Наименование вещества	Фоновые концентрации					
		Штиль	Север	Восток	Юr	Запад	
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6	
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5	
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081	
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7	
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028	
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315	
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6	
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7	

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные площадки

Nº	Тип	Полное описание площадки		адки	Ширина, (м)	Шаг, (м)				Высота, (м)	Комментарий
		Коорді серед 1-й стор	ины	Координаты середины 2-й стороны (м)			Ť				
		X	Υ	Χ	Υ		Х	Υ			
1	Заданная	-9000	-162	9000	-162	18000	200	200	2		

Расчетные точки

Nº	Координаты точки (м)		Высота (м)	Тил точки	Комментарий
	Х	Υ			
4	533,00	405,00	2	на границе СЗЗ	
5	840,00	173,00	2	на границе СЗЗ	
6	1010,00	-162,00	2	на границе СЗЗ	
7	920,00	-542,00	2	на границе СЗЗ	
8	533,00	-600,00	2	на границе СЗЗ	
9	233,00	-468,00	2	на границе С33	
10	-42,00	-162,00	2	на границе С33	
11	-19,00	404,00	2	на границе СЗЗ	
1	966,00	114,00	2	на границе жилой зоны	
2	1387,00	-96,00	2	на границе жилой зоны	
3	638,00	-714,00	2	на границе жилой зоны	

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0.01

Код	Наименование	Сумма Ст/ПДК
0183	Ртуть (Ртуть металлическая)	0.0000564

Результаты расчета по веществам (расчетные точки)

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Voons		D		THORONA (M				
145	Коорд	Коорд		Концентр.		Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
2	1387	96	2	0.34	262	5,00	0.245	0,301	4
7	920	-542	2	0.34	309		0.286	0.305	3
5	840	173	2	0.32	227	3,90	0.277	0.303	3
4	533	405	2	0.32	195		0.301	0.309	3
11		404	2	0.32	154	1,90		0.310	3
1	966	114	2	0.32	235		0.301	0.308	4
10	_42	-162	2	0.32	86		0.311	0.313	3
6	1010	-162	2	0.32	255		0.303	0.309	3
. 9	233	-468	2	0.32	31	1,90	0.312	0.314	3
3	638	-714	2	0.32	316		0.309	0.312	 _
8	533	-600	2	0.32	347	1,90	0.311	0.312	3

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

- II-	10		<u> </u>	сера диоксид (Ангидрид сернистыи)						
Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	•	Скор. ветра		Фон до искл.	Тип точки	
9	233	-468		0.05		5,00		0.055	3	
8	533	-600	2	0.04				0.054	3	
10	-42		2	0.04	89			0.055	3	
<u>3</u>	638	-714	2	0.04	339	5,00		0.054	4	
	920	<u>-5</u> 42	2	0.02	308	5,00	0.023	0.054	3	
6	1010	-162	2	0.02	271	5,00	0.016	0.054	 3	
<u> 2 </u>	1387		2	0.01	266	5,00	0.011	0.054	4	
4	533	405	2	0.01	191	5,00	0.011	0.054	3	
<u>11</u>	19	404	2	0.01	141	5,00	0.011	0.054	3	
1	966	114	2	0.01	243		0.011	0.054	- 4 -	
5	840	173	2	0.01	231	5,00	0.011	0.054		

Вещество: 0337 Углерод оксид

				<u> </u>	этлерод	ОКСИД			
Nº	Коорд			Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(M)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
9	233	-468	2	0.22	61	1 1 1 1	0.223	0.224	3
10	-42	-162	2	0.22	100		0.221	0.224	3
8	533	-600	2	0.22	8	5,00	0.218	0.219	. 3
3	638	_714	2	0.22	353		0.216	0.217	4
11	-19	404	2	0.21	139		0.206	0.210	3
7	920	-542	2	0.21	308		0.209	0.210	$\frac{3}{3}$
6	1010	-162	2	0.21	255		0.204	0.206	3
4	533	405	2	0.21	176		0.202	0.204	3.
5	840	173	2	0.21	247		0.203	0.204	3
1	966	114	2	0.20			0.201	0.204	$\frac{3}{4}$
2	1387	-96	2	0.20	259		0.196	0.200	4

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Коорд Х(м)	<u> </u>	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип
10		162	2	0.03	89	5,00	0.034	0.034	3
9 1	233		2	0.03	32	5,00	0.034	0.034	
$\frac{3}{2}$	638	714	2	0.03	340	5,00	0.034	0.034	4
<u> </u>	533	600	2	0.03	347	5,00	0.034	0.034	3

2	1387	-96	2	0.03	265	5,00	0.033	0.033	4
7	920	-542	2	0.03	309	5,00	0.033	0.034	3
11	-19	404	2	0.03	140	5,00	0.033	0.034	3
4	533	405	2	0.03	193	4,30	0.033	0.033	3
6	1010	-162	2	0.03	271	5,00	0.033	0.034	3
5	840	173	2	0.03	227	3,90	0.033	0.033	3
1	966	114	2	0.03	238	4,00	0.033	0.033	4

Вещество: 6009 Группа сумм. (2) 301 330

					,	1-, 00 : 000			
Nº	Коорд	Коорд		Концентр.		Скор.	Фон (д.	Фон до	Тип
	Х(м)		(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
9	233	468	2	0.37	31	1,90	0.366	0.368	3
10			2	0.37	86	1,90	0.363	0.368	3
8	533	-600	2	0.37	347	1,90	0.363	0.367	3
3	638		2	0.37	316	1,90	0.359	0.366	4
4	533	405	2	0.37	195		0.345	0.362	3
5	840	173	2	0.37	226		0.346	0.362	3
<u>11</u>	19	404	2	0.37	154	1,90	0.346	0.364	3
1	966	114	2	0.37	236		0.344	0.362	- 4
7	920	-542	2	0.37	286		0.353	0.364	3
6	1010	-162	2	0.36	255		0.348	0.363	3
2	1387	-96	2	0.36			0.333	0.361	4

Максимальные концентрации и вклады по веществам (расчетные площадки)

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Площадка: 1

Поле максимальных концентраций

Vaann V/>	10					<u>,</u>		
Коорд Х(м)	Коорд Ү(м)	Концен [.] ПДІ		Напр.в	етра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
2000	1562		0.42		312	5,00	0.219	
	Площадка	ц Цех	Исто	чник		двд. ПДК	Вклад %	0,290
	0	2	3	}		0.08	17,92	
	0	2	12	:3		0.07	16,62	
	0	2	5	<u>i </u>		0.04	9,24	
2200	1562		0.42		308	5,00		0.295
	Площадка	ц Цех 🗍	Исто	ник	Вкла	двд. ПДК	Вклад %	
	0	2	3	I	·	0.07	17,54 ·	
	0	2	12	3		0.07	16,85	a
	0	2	5			0.04	9,49	
2000	1762		0.42		315	5,00		0.295
	Площадка	Цех	Источ	іник	Вкла,	двд. ПДК	Вклад %	
	0	2	3			0.07	17,53	
	0	2	12			0.07	16,47	
	0	2	5			0.04	9,18	

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Площадка: 1

Коорд Х(м)		Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
400	362 Площадка		0.05 Источ	7 (U)AV	5,00		
	0	2	3	иник вкла	д в д. ПДК 3.0e-4:	Вклад % 0,57	

200	-362		0.05	47	5,00	0.050	0.055
	Площадка	Цех	Источник	Вклад	в д. ПДК	Вклад %	
	0	2	3		5.9e-4	1,17	
	0	2	124		1.1e-5	0,02	
	0	2	125	_	1.1e-5	0,02	•
400	-562		0.05	4	5,00	0.049	0.054
	Площадка	Цех	Источник	Вклад	в д. ПДК	Вклад %	
	0	2	3		9.6e-4	1,93	
	0	2	5		1.5e-6	0,00	

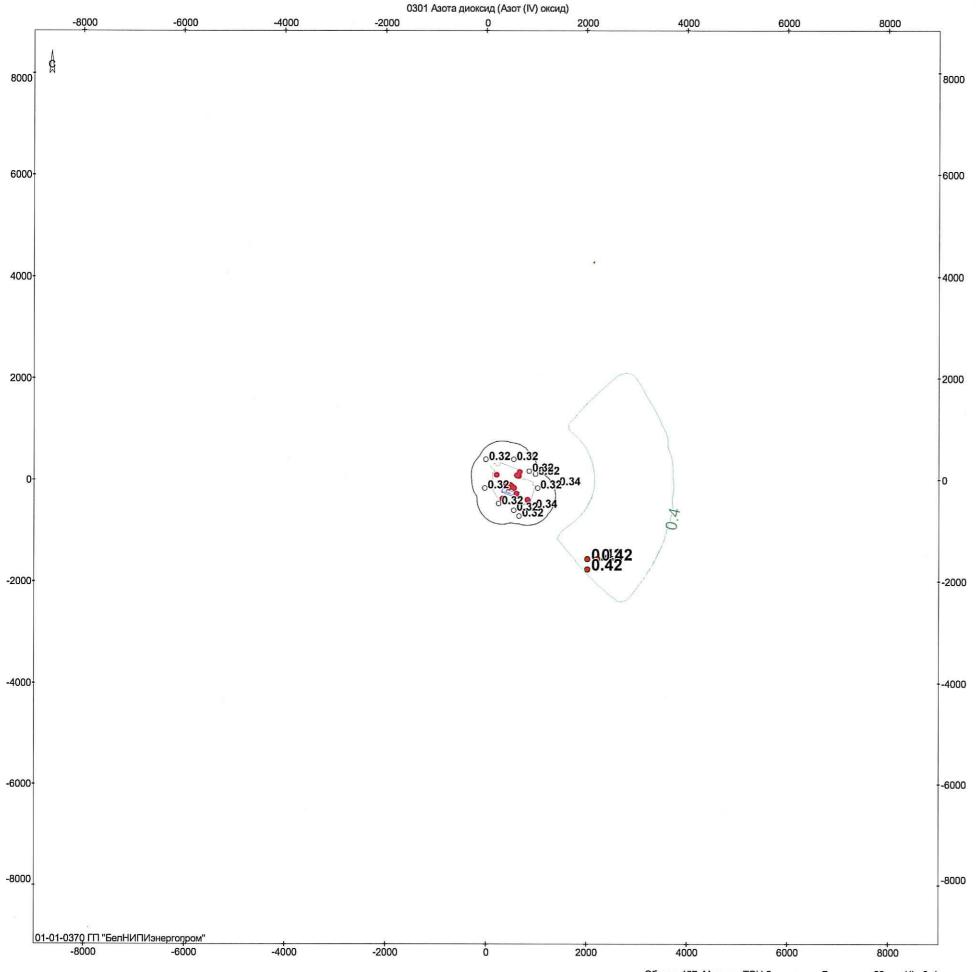
Вещество: 0337 Углерод оксид

Площадка: 1

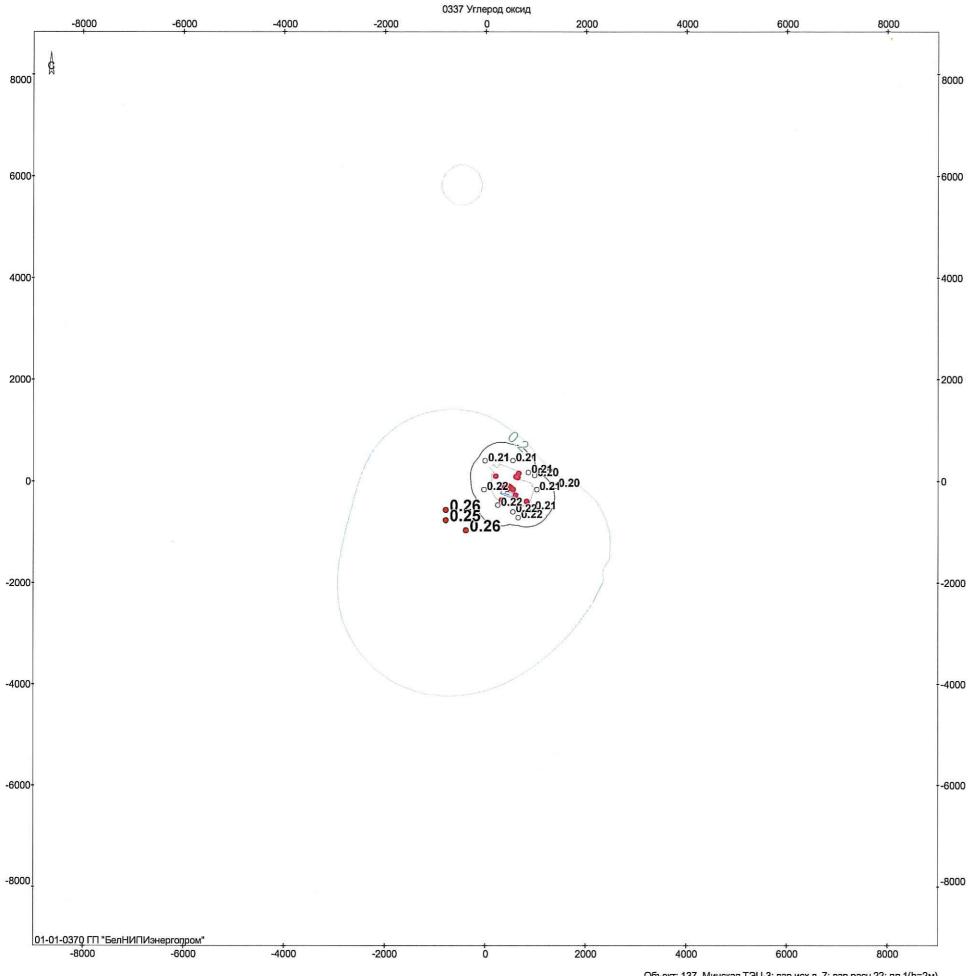
Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
-400			0.26	54	5,00	0.250	0.255
	Площадка	ц Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	12	23	7.4e-3	2,87	
	0	2	3	3	9.3e-4	0,36	
	0	2	4		2.1e-4	0,08	
-800	562		0.26	77	5,00	0.247	0,252
	Площадка	ι Цех	Исто		двд. ПДК	Вклад %	
	0	2	12	.3	8.6e-3	3,33	
	0	2	3	}	1.9e-3	0,76	
	0	2	4	<u> </u>	2.7e-4	0,10	
	762		0.25	69	5,00	0.243	0.249
	Площадка	і Цех 🧻	Источ	чник Вкла	двд. ПДК	Вклад %	
	0	2	12	3	8.7e-3	3,43	
	0	2	3		2.0e-3	0,80	
	0	2	4	•	3.1e-4	0,12	

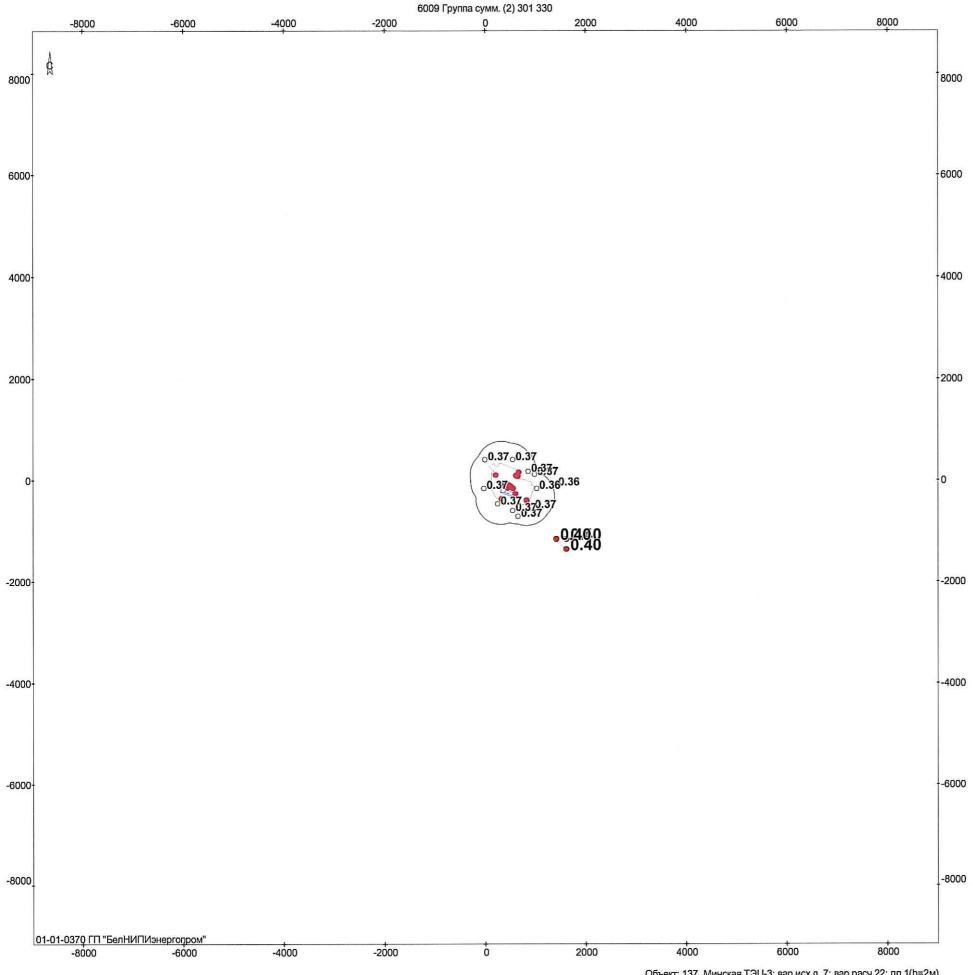
Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)


Площадка: 1

Коорд Х(м)	Коорд Ү(м)	Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
400			0.04	41	5,00	0.033	0.035
	Площадка	Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	3	1.4e-3	3,87	
	0	2	4	ļ	5.6e-4	1,57	
	0	2	. 5	<u> </u>	5.3e-4	1,48	
	-962	_	0.04	47	4,90	0.034	0.035
	Площадка	і Цех	Исто	чник Вкла	д в д. ПДК	Вклад %	
	0	2	3	}	1.3e-3	3,57	
	0	2	5	;	4.5e-4	1,26	
	0	2	4	<u> </u>	4.5e-4	1,24	
	<u>5</u> 62		0.04	73	5,00	0.034	0.035
	Площадка	ι Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	}	1.4e-3	3,89	
	0	2	5	i	5.8e-4	1,60	
	0	2	4	•	2.6 e-4	0,71	


Вещество: 6009 Группа сумм. (2) 301 330

Площадка: 1


Коорд Х(м)	Коорд Ү(м)	Концен		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до
100		ПДІ					исключения
1600	1162		0.40	311	5,00	0.230	0.353
	Площадка	а Цех	Источ	ник Вкл	ед в д. ПДК	Вклад %	
	0	2	3		0.08	19,81	
	0	2	12	.3 ·	0.06	14,00	
	0	2	5	•	0.03	6,92	•
1600	-1362		0.40	315	5,00	0.220	0.353
	Площадка	цех	Источ	ник Вкл	эд в д. ПДК	Вклад %	
	0	2	3		0.08	20,04	
	0	2	12	3	0.06	14,50	
	0	2	5		0.03	6,95	
1400	-1162		0.40	315	5,00	0.246	0.355
	Площадка	ц Цех	Источ	ник Вкл	эд в д. ПДК	Вклад %	
	0	2	3		0.08	19,01	
	0	2	12	3	0.05	11,75	
	0	2	5	ı	0.02	5,14	

Объект: 137, Минская ТЭЦ-3; вар.исх.д. 7; вар.расч.22; пл.1(h=2м) Масштаб 1:74700

Объект: 137, Минская ТЭЦ-3; вар.исх.д. 7; вар.расч.22; пл.1(h=2м) Масштаб 1:74700

Объект: 137, Минская ТЭЦ-3; вар.исх.д. 7; вар.расч.22; пл.1(h=2м) Масштаб 1:74700

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 6, ВАРИАНТ 2

Вариант расчета: Приземный слой

Расчет проведен на зиму Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость превышения в пределах 5%)	5 M/c

Параметры источников выбросов

-			г								<u>з выор</u>	UCUB								
Учет при	№ пл.	Nº цеха	№ ист.	. Наименование источника	Вар.	Тип	Высота ист. (м)			Объем ГВС	Скорость		Ko	эф. ел. 2	Коорд. К1-ос. (м)	Коорд		Коорд.	Коорд.	Ширина
расч.		7,011					NO1. (M)	,,,,,		(куб.м/с)	I BC (M/C)	1100(0	7 P	ел. 7	√1-ос. (м)	1 1-0C. (M) ^	(Z-OC. (M)	Y2-oc. (M)	источ.
-	0	1	4	Дымовая труба	1	1	100,0		6,00	186	6,5784	16	<u> </u>	1,0	303,0	-37	40	303,0	-374.0	<u>(м)</u> 0,00
_		Код		Наименование вещества	•	•	Выброс, (то: Cm/		Xm			<u>+,∪</u> 1/ПДК		Um	0,00
		01		Кадмий и его соединения			0.00014			0000000	1	0,0		1 656,	7 4,4		индк .000	1 695.8	4,7	
		01	40	Медь и его соединения (в перес			0.00100			0000000	1	0,0		1 656,			000	1 695,8	4,7	
				медь)					-1		•	0,0	-	, 000,	1	•	,000	1 000,0	411	
		01		Никель оксид			0.12919	97	0,0	0000000	1	0.0	08	1 656.	7 4.4	٥	.007	1 695,8	4,7	
		01		Ртуть (Ртуть металлическа			0.00015	50	0,0	0000000	1	0,0		1 656,			.000	1 695,8	4,7	
		01		Свинец и его соединения			0.003646		0,0	000000	1	0,0	02	1 656,	7 4,4		002	1 695,8	4.7	
		02	28	Хрома трехвалентные соединени	я (в пе	-	0.001000	00	0,0	0000000	1	0,0	00	1 656,	7 4,4	0	000	1 695,8	4,7	
				ресчете на хром)																
		02		Цинк и его соединения (в пересч цинк)			0.000000	00	0,0	0000000	1	0,0	00	1 656,	7 4,4	0	,000	1 695,8	4,7	
		030		Азота диоксид (Азот (IV) окс			41.66000		0,0	000000	1	0,0	99	1 656,	7 4,4	0	094	1 695,8	4.7	
		032		Мышьяк и его соединения			0.000000		,	0000000	1	0,0	00	1 656,	7 4,4	0	000	1 695,8	4,7	
		032		Углерод (Сажа)			0.673000			000000	1,5	0,0		1 449,		0	,004	1 483,9	4,7	
		033 033		Сера диоксид (Ангидрид серни	стый)		142.25000			000000	1	0,1		1 656,			161	1 695,8	4,7	
		070		Углерод оксид Бенз/а/пирен (3,4-Бензпире			11.07000		•	0000000	1	0,0		1 656,			001	1 695,8	4,7	
		290		Мазутная зола теплоэлектроста			0.000209			0000000	1	0,0		1 656,			024	1 695,8	4,7	
	0	1		Дымовая труба	<u>іпции</u> 4	1			9,60	740.7	1,5	0,0		1 449,			017	1 483,9	4,7	
		Код в		Наименование вещества		•	тоо,о Зыброс, (10,23317	188,8		1,0	533,0			533,0	-162,0	0,00
		012	24	Кадмий и его соединения			о.001064 0.001064			ірос, (т/г) Ю00000	F Ле 1	το: Cm/Γ 0,0		Xm			и⊓дк		Um	
		014		Медь и его соединения (в пересч	ете на		0.008000			000000	1	0,0		3 494,3 3 494,3			000	3 565,8 3 565,8	6,3	
			-	медь)	010 110		0.000000	,,,	0,0	000000	'	0,0	JU	3 494,	2 0	U,	000	2 202,0	6,3	
		016	34	Никель оксид			0.950446	60	0.0	000000	1	0.0	10	3 494,2	2 6	n	010	3 565,8	6.3	
		018	3	Ртуть (Ртуть металлическая	1)		0.001083		, -	000000	i	0.00		3 494,2			000	3 565,8		
		018	34	Свинец и его соединения	•		0.026821			000000	i	0,0		3 494,			003	3 565,8		
		022	!8	Хрома трехвалентные соединени	я (в пе-		0.010200	00		000000	1	0,00		3 494,		,	000	3 565,8		
				ресчете на хром)					•			-,-			-	-		5 555,5	-,-	
		022	:9	Цинк и его соединения (в пересч цинк)	ете на		0.034000	00	0,0	000000	1	0,00	00	3 494,2	2 6	0,	000	3 565,8	6,3	
		030		Азота диоксид (Азот (IV) окси	д)	2	06.58000	000	0,0	000000	1	0,09	91	3 494,2	2 6	· 0.	087	3 565,8	6,3	
		032		Мышьяк и его соединения			0.000000	10	0,0	000000	1	0,00		3 494,2			000	3 565 8	6,3	
		032		Углерод (Сажа)			4.954000			000000	1,5	0,00		3 057,5		0,	005	3 120,1	6,3	
		033		Сера диоксид (Ангидрид сернис	тый)		044.35700	_		000000	1	0,22		3 494,2		0,	220	3 565,8	6,3	
		033 070		Углерод оксид			53.370000			000000	1	0,00		3 494,2			001	3 565,8		
		290	_	Бенз/а/пирен (3,4-Бензпирен			0.001372			000000	1_	0,03		3 494,2			029	3 565,8	6,3	
%	0	250		Мазутная зола теплоэлектроста	нции	_	2.887000			000000	1,5	0,02		3 057,5			023	3 120,1	6,3	
76	٥			Вытяжка ЦЦР (сварочный пост)	7	1	6,5	1	0,50	0,303	1,54317	20	"	1,0	472,0	-130	0,0	472,0	-130,0	0,00
		Код в		Наименование вещества		È	ыброс, (г	/c)	Выб	рос, (т/г)	F Лет	ro: Cm/F	ідк	Xm	Úm 3	има: Ст	/ПДК	Xm	Um	
		030		Азота диоксид (Азот (IV) окси	д)		0.003200		0,0	000000	1	0,02	23	37,1	0,5		041	28,7	0,7	
		033		Углерод оксид			<u>0.0036</u> 92			000000	1	0,00		37,1	0,5	0,	002	28,7	0,7	
%	0	1		Вытяжка РММ (сварочный пост)	1	1	3,0	- (0,40	0,206	1,6393	20		1,0	350,0	-91	,0	350,0	-91,0	0,00
		Код в	-ва	Наименование вещества		B	ыброс, (г	/c)	Выбі	DOC, (T/r)	F Лет	ro: Cm/Π	ЛК	Xm	Um 3	има: Ст	лдк	Xm	Um	
		030		Азота диоксид (Азот (IV) окси	д)		0.003200			000000	1	0,14		17,1	0,5		160	17,1	0,8	
		033	7	Углерод оксид			0.003692			000000	1	0.00		17,1	0,5		009	17,1	8,0	
									• •			-,				٠,			-,-	

_	_			<u>~^</u>										
	_		<u> 1 </u>	123 Дымовая труба 1	1 60,0	7,00 650,6	16,9055	103	1,0	580,0	-276,0	580,0	-276,0	0,00
			Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето		C Xm	Um Зима:			Um	0,00
			0183	Ртуть (Ртуть металлическая)	0.0000202	0,0000000	1	0,000	1 603,4	8,1	0,000	1 631.6	8,7	
			0301	Азота диоксид (Азот (IV) оксид)	44.7050000	0,0000000	1	0,135	1 603.4	8.1	0,130	1 631,6	8,7	
			0337	Углерод оксид	134.1150000	0,0000000	1	0,020	1 603,4		0,019	1 631,6	8,7	
			0410	Метан	67.0580000	0,0000000	1	0,001	1 603,4	8,1	0.001	1 631,6		
_			0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000019	0,0000000	1	0.000	1 603,4		0,000	1 631,6		
	+	0		3 Дымовая труба 1	1 100,0	7,00 338,89	8,80588	133	1,0	425,0	-152,0	425,0	-152,0	0,00
			Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:			Um Зима:			Um	0,00
			0183	Ртуть (Ртуть металлическая)	0.0000260	0,0000000	1	0,000	1 847,2		0.000	1 896,3	5,4	
			0301	Азота диоксид (Азот (IV) оксид)	43.3200000	0,0000000	1	0,082	1 847.2	5.1	0,078	1 896,3	5,4 5,4	
			0330	Сера диоксид (Ангидрид сернистый)	5.2480000	0,0000000	1	0,005	1 847.2	5.1	0.005	1 896,3	5,4	
			0337	Углерод оксид	38.6640000	0,0000000	1	0,004	1 847.2	5.1	0.003	1 896,3	5,4	
			0703	Бенз/а/пирен (3,4-Бензпирен)	0.0001800	0,0000000	1	0,017	1 847,2	5,1	0,016	1 896,3	5,4	
		0		4 Дымовая труба 1	1 100,0	6,00 76,65	2,71094	225	1,0	303,0	-374,0	303,0	-374,0	0,00
			Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето;			Um Зима:			Um	0,00
			0124	Кадмий и его соединения	0.0001530	0,0000000	1	0,000	1 409,1	3,5	0,000	1 437,3	3,7	
			0140	Медь и его соединения (в пересчете на	0.0011040	0,0000000	1	0,000	1 409,1	3.5	0,000	1 437,3	3,7	
			0164	медь)					•	•	•		-,.	
			0183	Никель оксид	0.1369270	0,0000000	1	0,011	1 409,1	3,5	0,011	1 437,3	3,7	
			0184	Ртуть (Ртуть метаплическая)	0.0001530	0,0000000	1	0,000	1 409,1	3,5	0,000	1 437,3	3,7	
			0228	Свинец и его соединения	0.0038640	0,0000000	1	0,003	1 409,1	3,5	0,003	1 437,3	3,7	
			02.20	Хрома трехвалентные соединения (в пересчете на хром)	0.0014720	0,0000000	1	0,000	1 409,1	3,5	0,000	1 437,3	3,7	
			0229	цинк и его соединения (в пересчете на	0.0049680	0.000000	_							
				цинк)	0.0049060	0,0000000	1	0,000	1 409,1	3,5	0,000	1 437,3	3,7	
			0301	Азота диоксид (Азот (IV) оксид)	14.8600000	0,0000000	4	0.040	4 400 4					
			0325	Мышьяк и его соединения	0.0000610	0,0000000	1	0,049	.1 409,1	3,5	0,047	1 437,3	3,7	
			0328	Углерод (Сажа)	0.7140000	0,0000000	1 1,5	0,000	1 409,1	3,5	0,000	1 437,3	3,7	
			0330	Сера диоксид (Ангидрид сернистый)	72.1860000	0,0000000	1,5	0,006	1 233	3,5	0,006	1 257,7	3,7	
			0337	Углерод оксид	6.3690000	0,0000000	1	0,119	1 409,1	3,5	0,114	1 437,3	3,7	
			0703	Бенз/а/пирен (3,4-Бензпирен)	0.0002690	0,0000000	1	0,001 0,044	1 409,1 1 409,1	3,5	0,001	1 437,3	3,7	
			2902	Твердые частицы	1.2190000	0,0000000	3	0,044		3,5	0,043	1 437,3	3,7	
			2904	Мазутная зола теплоэлектростанций	0.3560000	0,0000000	1,5	0,010	704,6 1 233	3,5 3,5	0,010	718,7 1 257,7	3,7	
+		0	2	5Дымовая труба 1	1 180,0		6,62773	161	1,0		0,021		3,7	0.00
			Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	<u>0,02773</u> F Лето:	Cm/ПДК	Xm		-162,0	533,0	-162,0	0,00
			0124	Кадмий и его соединения	0.0010610	0,0000000	1 11610.	0,000	3 062:8	Um Зима: 4,8	Ст/ПДК	Xm	Um ·	
			0140	Медь и его соединения (в пересчете на	0.0076400	0,0000000	i	0,000	3 062,8	4,8	0,000 0,000	3 142,4	5,1	
				медь)		-,	•	0,000	0 002,0	4,0	0,000	3 142,4	5,1	
			0164	Никель оксид	0.9475740	0,0000000	1	0,014	3 062,8	4.8	0,013	3 142,4	5,1	
			0183	Ртуть (Ртуть металлическая)	0.0010610	0,0000000	1	0,000		4.8	0,000	3 142,4		
			0184	Свинец и его соединения	0.0267400	0,0000000	1	0,004	3 062,8	4,8	0,004	3 142 4	5,1	
			0228	Хрома трехвалентные соединения (в пе-	0.0101870	0,0000000	1	0,000	3 062,8	4,8	0,000	3 142,4	5,1	
			0220	ресчете на хром)				·	·	,-	-,	·, .	-,.	
			0229	Цинк и его соединения (в пересчете на цинк)	0.0343800	0,0000000	1	0,000	3 062,8	4,8	0,000	3 142,4	5,1	
			0301	цинк) Азота диоксид (Азот (IV) оксид)	155,2680000	A 0000000	4	0.000	0.000 -	4.0				
			0325	Мышьяк и его соединения	0.0004240	0,0000000	1	0,089	3 062,8	4,8	0,084	3 142,4	5,1	
			0328	Углерод (Сажа)	4.9380000	0,0000000	1	0,000	3 062,8	4,8	0,000		5,1	
			0330	Сера диоксид (Ангидрид сернистый)	499.5470000	0,0000000	1,5	0,007	2 680	4,8	0,007	2 749,6		
			0337	Углерод оксид		0,0000000	1	0,143	3 062,8	4,8		3 142,4	5,1	
			0703	Бенз/а/пирен (3,4-Бензпирен)	44.0720000 0.0016860	0,0000000	1	0,001	3 062,8	4,8	0,001		5,1	
			2902	Твердые частицы	8.4350000	0,0000000	1		3 062,8	4,8	0,046	3 142,4		
				· soppos iconiqui	0.4550000	0,0000000	3	0,012	1 531,4	4,8	0,011	1 571,2	5,1	

+ 0 2 133[Jeunopas prySa 1 1 60.0 7,00 836,46 21,73498 110 1,0 580,0 -276,0 580,0 -276,0 0,00 1033 Prysis (Prys wetranneccasis) 0,0000230 0,0000000 1 0,128 778,42 9,6 0,000 1807,5 10,2 3031 Astoria powerug (Astoria powerug) 157,6470000 0,0000000 1 0,128 1784,2 9,6 0,001 1807,5 10,2 1032 2549000000 1 0,000 1 0,000 1784,2 9,6 0,001 1807,5 10,2 4 0 2 149 Bartswace rappeace-crownerug 1 7,6470000 0,0000000 1 0,011 1784,2 9,6 0,001 1807,5 10,2 4 0 2 149 Bartswace rappeace-crownerug 1 7,7 0,000 1 0,001 7,8 0,7 0,000 7,9 0,00 0,00 7,9 0,00 0,00 6,			2904	Мазутная зола теплоэлектростанций	2.4660000	0,0000000	1,5	0,026	2 680	4,8	0,025	2 749,6	5,1	
Код. в-ва	+	0	2	123 Дымовая труба	1 60,0	7.00 836.46	21.73498	110	1.0	580.0	-276.0			0.00
0183								Ст/ПДК			Ст/ПЛК			0,00
3031 Аэота диоксид (Аэот (VI) Оксид) 52,3490000 0,00000000 1 0,128 1784,2 9,6 0,012 1807,5 10.2						,								
157,0470000 1,0000000000000000000000000000000			0301		52.3490000		1							
1			0337	Углерод оксид	157.0470000		1							
+ 0 2 124 (Вытяжка гаража-стоянки 1 1 7,8 0,50 1,532 7,80241 20 1,0 629,0 79,0 629,0 79,0 0,00 Код в на ва на выброс, (/г/) Выброс, (/г/) F. Лего. См/ПДК Xm. Um 3,00 0,00 75,6 1,1 0,00 75,6 1,1 0,00 75,8 0,7 0,00 75,6 1,1 0,00 75,6 1,1 0,00 75,6 1,1 0,00 75,6 1,1 0,00 75,6 0,00 75,6 1,1 0,00 75,6 0,7 0,00 75,6 1,1 0,00 75,8 0,7 0,00 75,6 1,1 1 1,0 2,0 75,8 0,7 0,00 75,6 1,1 1 1,0 2,0 7,8 0,7 0,00 75,6 1,1 1 1,0 2,0 7,8 0,7 0,00 75,6 1,1 1 1,0 2,0			0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000020		1			1000		1 807 5		
ПОЖДЕПО ПОЖДЕ ПОЖДЕПО ПОЖДЕ ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕ ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕ ПОЖДЕПО ПОЖДЕЛО ПОЖДЕПО ПОЖДЕЛО ПОЖДЕПО ПОЖДЕЛЬ ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО ПОЖДЕПО	+	0	2	124 Вытяжка гаража-стоянки 1	1		7 80241							0.00
Код. е-ва Наименование вещества Выброс, (гг/с)					,0	0,00	7,00241	20	1,0	025,0	73,0	023,0	73,0	0,00
3091 Аэота диоксид (Аэот (IV) оксида) 0.0004500 0.00000000 1 0.000 57,8 0,7 0.001 75,6 1,1 0.001 0.002 0.0000000 1 0.000 57,8 0,7 0.000 75,6 1,1 0.001 0.0000 0.000 0.000 0.000 0.000 0.000 0.0000			Кол в-ва		Bulhace (r/c)	Buffner (T/r)	Е Пото:	Cm/DUV	Vm	Lim Ourse	C==/[][][(V	Llm	
0304 Азот (II) оксид (Азота оксид) 0.0000730 0.00000000 1 0.000 57,8 0.7 0.000 75,6 1.1								Property of the Control of the Contr						
0.000						TO A STATE OF THE PARTY OF THE								
10330 Сера диожсид (Ангидрия сернистый) 0.0000830 0.0000000 1 0.000 57,8 0.7 0.000 75,6 1.1				the comment of the co										
1				Сера лиоксил (Ангилрил сернистый)										
2754 Углеводороды предельные алифатическо- поряда СП-С19 + 0 2 125Вытяжка гаража-стоянки 1 1 7,8 0,50 1,532 7,80241 20 1,0 625,0 82,0 625,0 82,0 0,00 Код в-ва Намменование вещества 30301 Азота диоксид (Азот ((V) оксид.) 0.0004500 0.0000000 1 0,001 57,8 0,7 0,001 75,6 1,1 0,000 57,8 0,7 0,001 75,6 1,1 0,000 57,8 0,7 0,000 75,6 1,1 0,000 57,8 0,000 75,6 1,1 0,000 57,8 0,000 75,8							(5)			0.75 (4.5)			17.00	
+ 0 2 125 Вытажка гаража-стоянки 1 1 7,8 0,50 1,532 7,80241 20 1,0 625,0 82,0 625,0 82,0 0,00 Код в-ва 0301 Наименование вещества 0301 Азот (II) оксид (Азота оксид) 0,0000000 0,00000000 1 0,001 7,8 0,7 0,000 7,56 1,1 0312 Азот (II) оксид (Азота оксид) 0,00000000 0,00000000 1 0,000 57,8 0,7 0,000 75,6 1,1 0321 Азот (II) оксид (Азота оксид) 0,0000000 0,0000000 1 0,000 57,8 0,7 0,000 75,6 1,1 0337 Утперод оксид Оксивание 0,0000000 1 0,000 57,8 0,7 0,000 75,6 1,1 4 0 2 126 Выглажка гаража-стоянки 1 7,8 0,32 0,000 75,8 0,7 0,000 75,6 1,1 4 0 2 126 Выглажка гаража-стоянки 1							•							
Пождело По				го ряда С11-С19	0.0013000	0,000000	886	0,002	57,0	0,7	0,001	75,0	1,1	
Пождело По	+	0	2	125 Вытяжка гаража-стоянки 1	1 7,8	0,50 1,532	7,80241	20	1,0	625,0	82,0	625,0	82,0	0,00
ОЗО1 АЗОТ ДИОКСИД (АЗОТ (IV) ОКСИД) О.0004500 О.00000000 1 О.001 57.8 0.7 О.001 75.6 1.1				пождепо										
3301 Азота диоксид (Азот (IV) оксид) 0.0004500 0.0000000 1 0.001 57,8 0,7 0.001 75,6 1,1			Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
3304 Аэот (II) оксид (Аэота оксид) 0.0000730 0.00000000 1 0.000 57,8 0,7 0.000 75,6 1,1			0301	Азота диоксид (Азот (IV) оксид)	0.0004500		1							
0328			0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1							
0330 Сера диоксид (Ангидрид сернистый) 0.0000830 0.00000000 1 0.000 57,8 0,7 0.000 75,6 1,1			0328	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	50,6	0,7				
1			0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	57.8	0.7				
го ряда С11-С19 + 0 2 126 Вытяжка гаража-стоянки 1 1 7,8 0,32 1,667 21,39068 20 1,0 617,0 88,0 617,0 88,0 0,00 Код в-ва Озо1 Азота диоксид (Азот (И) оксид (Азота оксид) Выброс, (г/с) Выброс, (г/с) Выброс, (т/г) F Лето: Сти/ПДК Xm Um 3001 100,01 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 10,00 11,1 0,000 10,00 11,1 0,000 10,00 11,1 0,000 10,0 1,1 0,000 10,0 1,1 0,000 10,0 1,1 0,000 10,0 1,1 0,000 1,1 0,000 1,1 0,000 1,1 0,000 1,1 0,000 1,1 0,000 1,1 1,0 1,1 0,000 1,1 1,1 0,000 1,1 1,0 1,1 1,0 1,1 1,0 1,1 1,0 1,0 1,1 1,0 1,0 <				Углерод оксид	0.0132820	0,0000000	1	0,002	57,8	0,7	0,001	75,6	35.00	
+ 0 2 126 Вытяжка гаража-стоянки пождело 1 1 7,8 0,32 1,667 21,39068 20 1,0 617,0 88,0 617,0 88,0 0,00 Код в-ва О301 Азота диоксид (Азота (И) оксид (Азота оксид) Выброс, (г/с) Выброс, (г/с) Выброс, (г/г) F Лето: СтиЛДК Хт Um Зима: СтиЛДК Хт Um О001 100,4 1,1 0328 Углерод (Сажа) 0.0000730 0.0000000 1,5 0,000 99,9 1,1 0,000 10,4 1,1 0330 Сера диоксид (Ангидрид сернистый) 0.0000000 1,0000 99,9 1,1 0,000 10,4 1,1 2754 Углеводороды предельные алифатического горяда С11-С19 0.013820 0,0000000 1 0,001 99,9 1,1 0,001 100,4 1,1 4 0 2 127 Вытяжка ТО (пождело) 1 1,7,8 0,16 0,225 11,19058 20 1,0 604,0 83,0 604,0 83,0 0,00 4 0 2 127 Вытяжка ТО (пождело) 1 1,7,8 0,16 0,225 11,			2754	Углеводороды предельные алифатическо-	0.0019660	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
Пождепо Выброс, (т/с) Выброс, (т/с) Выброс, (т/с) Выброс, (т/с) Виброс, (т/с) Ви											•			
Пождело Выброс, (т/с) Выброс, (т/с) Виброс, (т/с) Ви	+	0	2 1	126 Вытяжка гаража-стоянки 1	1 7,8	0.32 1.667	21.39068	20	1.0	617.0	88.0	617.0	88.0	0.00
Код в-ва Наименование вещества Выброс, (т/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um Олима: Cm/ПДК Xm Um Олима: Cm/ПДК Xm Um Олима: Cm/ПДК Xm Um Олима:											,-	, .	,-	-,
0301 Азота диоксид (Азот (IV) оксид) 0.0004500 0.0000000 1 0.001 99,9 1,1 0.001 100,4 1,1 0304 Азот (II) оксид (Азота оксид) 0.0000730 0.0000000 1 0.000 99,9 1,1 0.000 100,4 1,1 0.000 100,			Код в-ва	Наименование вещества	Выброс. (г/с)	Выброс (т/г)	F Лето:	Ст/ПЛК	Xm	Um Зима:	Ст/ПЛК	Xm	Um	
0304 Азот (II) оксид (Азота оксид) 0.0000730 0.0000000 1 0,000 99,9 1,1 0,000 100,4 1,1 0328 Углерод (Сажа) 0.0000210 0,0000000 1,5 0,000 87,4 1,1 0,000 87,9 1,1 0,000 100,4 1,1 03330 Сера диоксид (Ангидрид сернистый) 0.000830 0,0000000 1 0,001 99,9 1,1 0,000 100,4 1,1 0,001 100,4 1,														
0328 Углерод (Сажа) 0.0000210 0.0000000 1,5 0.000 87,4 1,1 0.000 87,9 1,1 0.000 87,9 1,1 0.000 87,9 1,1 0.000 87,9 1,1 0.000 100,4 1,1 0.001			0304				1							
0330 Сера диоксид (Ангидрид сернистый) 0.0000830 0.0000000 1 0.000 99,9 1,1 0.000 100,4 1,1 0.337 Углерод оксид 0.0132820 0.0000000 1 0.001 99,9 1,1 0.001 100,4 1,1 0.001 1.0 0.001 1.0 0.001 1.0 0.001 0.0			0328	Углерод (Сажа)										
0337 2754 Углеводороды предельные алифатическо- го ряда С11-С19 0.0132820 0.0019660 0,0000000 0,0000000 1 0,001 0,001 99,9 1,1 1,001 0,001 100,4 1,1 1,1 0,001 1,1 0,001 100,4 1,1 0,001 1,1 0,001 1,			0330	Сера диоксид (Ангидрид сернистый)	0.0000830					1500.00			S. C. C. C. C. C. C. C. C. C. C. C. C. C.	
2754 Углеводороды предельные алифатического ряда С11-С19 0.0019660 0,0000000 1 0,001 99,9 1,1 0,001 100,4 1,1 + 0 2 127 Вытяжка ТО (пождело) 1 1 7,8 0,16 0,225 11,19058 20 1,0 604,0 83,0 604,0 83,0 0,00 Код в-ва Наименование вещества Выброс, (г/с) Выброс, (г/с) Выброс, (г/г) F Лето: Ст/ГДК Xm Um Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК Xm Um Оли Зима: Ст/ГДК			0337	Углерод оксид	0.0132820		1							
го ряда С11-С19 + 0 2 127 Вытяжка ТО (пождепо) 1 1 7,8 0,16 0,225 11,19058 20 1,0 604,0 83,0 604,0 83,0 0,00			2754	Углеводороды предельные алифатическо-	0.0019660	0,0000000	1	0.0000000000000000000000000000000000000						
Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Хт Um Зима: Ст/ПДК Хт Um О301 Азота диоксид (Азот (IV) оксид) 0.0002080 0.00000000 1 0.001 44,5 0,5 0.5 0.001 37,7 0,6 0304 Азот (II) оксид (Азота оксид) 0.000340 0.00000000 1 0.000 44,5 0,5 0.000 37,7 0,6 0328 Углерод (Сажа) 0.0000130 0.00000000 1,5 0.000 38,9 0,5 0.000 32,9 0,6 0330 Сера диоксид (Ангидрид сернистый) 0.0000390 0.00000000 1 0.000 44,5 0,5 0,000 37,7 0,6 0337 Углерод оксид О0000000 1 0.0000000 1 0.000 44,5 0,5 0.000 37,7 0,6 0337 Углерод оксид 0.0076320 0.0000000 1 0.000 44,5 0,5 0.003 37,7 0,6 0.001 0.0														
Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Хт Um Зима: Ст/ПДК Хт Um О301 Азота диоксид (Азот (IV) оксид) 0.0002080 0.00000000 1 0.001 44,5 0,5 0.5 0.001 37,7 0,6 0304 Азот (II) оксид (Азота оксид) 0.000340 0.00000000 1 0.000 44,5 0,5 0.000 37,7 0,6 0328 Углерод (Сажа) 0.0000130 0.00000000 1,5 0.000 38,9 0,5 0.000 32,9 0,6 0330 Сера диоксид (Ангидрид сернистый) 0.0000390 0.00000000 1 0.000 44,5 0,5 0,000 37,7 0,6 0337 Углерод оксид О0000000 1 0.0000000 1 0.000 44,5 0,5 0.000 37,7 0,6 0337 Углерод оксид 0.0076320 0.0000000 1 0.000 44,5 0,5 0.003 37,7 0,6 0.001 0.0	+	0	2 1	127 Вытяжка ТО (пождепо) 1	1 7,8	0,16 0,225	11,19058	20	1,0	604.0	83.0	604.0	83.0	0.00
0301 Азота диоксид (Азот (IV) оксид) 0.0002080 0,0000000 1 0,001 44,5 0,5 0,001 37,7 0,6 0304 Азот (II) оксид (Азота оксид) 0.000340 0,0000000 1 0,000 44,5 0,5 0,000 37,7 0,6 0328 Углерод (Сажа) 0.0000130 0,0000000 1,5 0,000 38,9 0,5 0,000 32,9 0,6 0330 Сера диоксид (Ангидрид сернистый) 0.0000390 0,0000000 1 0,000 44,5 0,5 0,000 37,7 0,6 0337 Углерод оксид 0.0076320 0,0000000 1 0,002 44,5 0,5 0,000 37,7 0,6 2754 Углеводороды предельные алифатического ряда С11-С19 + 0 2 128 Вытяжка мастерской поста 1 1 6,0 0,20 0,125 3,97887 20 1,0 590,0 88,0 590,0 88,0 0,00 0,00 0,00 0,00 0,00 0,00			Код в-ва	Наименование вещества	Выброс, (г/с)									-,
0304 Азот (II) оксид (Азота оксид) 0.0000340 0,0000000 1 0,000 44,5 0,5 0,000 37,7 0,6 0328 Углерод (Сажа) 0.0000130 0,0000000 1,5 0,000 38,9 0,5 0,000 32,9 0,6 0330 Сера диоксид (Ангидрид сернистый) 0.0000390 0,0000000 1 0,000 44,5 0,5 0,5 0,000 37,7 0,6 0337 Углерод оксид 0.0076320 0,0000000 1 0,002 44,5 0,5 0,003 37,7 0,6 2754 Углеводороды предельные алифатическо- 0.0011070 0,0000000 1 0,001 44,5 0,5 0,5 0,002 37,7 0,6 го ряда С11-С19 + 0 2 128 Вытяжка мастерской поста 1 1 6,0 0,20 0,125 3,97887 20 1,0 590,0 88,0 590,0 88,0 0,00			0301	Азота диоксид (Азот (IV) оксид)										
0328 Углерод (Сажа) 0.0000130 0,0000000 1,5 0,000 38,9 0,5 0,000 32,9 0,6 0330 Сера диоксид (Ангидрид сернистый) 0.0000390 0,0000000 1 0,000 44,5 0,5 0,000 37,7 0,6 0337 Углерод оксид 0.0076320 0,0000000 1 0,002 44,5 0,5 0,003 37,7 0,6 2754 Углеводороды предельные алифатического ряда С11-С19 + 0 2 128 Вытяжка мастерской поста 1 1 6,0 0,20 0,125 3,97887 20 1,0 590,0 88,0 590,0 88,0 0,00 0,00 0,00 0,00 0,00 0,00			0304	Азот (II) оксид (Азота оксид)	0.0000340	0,0000000	1							
0330 Сера диоксид (Ангидрид сернистый) 0.0000390 0,00000000 1 0,000 44,5 0,5 0,5 0,000 37,7 0,6 0337 Углерод оксид 0.0076320 0,00000000 1 0,002 44,5 0,5 0,50 0,003 37,7 0,6 2754 Углеводороды предельные алифатического ряда С11-С19 + 0 2 128 Вытяжка мастерской поста 1 1 6,0 0,20 0,125 3,97887 20 1,0 590,0 88,0 590,0 88,0 0,00 Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um				Углерод (Сажа)	0.0000130	0,0000000	1,5							
0337 Углерод оксид 0.0076320 0,00000000 1 0,002 44,5 0,5 0,5 0,003 37,7 0,6 0.0011070 0,0000000 1 0,001 44,5 0,5 0,5 0,002 37,7 0,6 го ряда С11-С19 + 0 2 128 Вытяжка мастерской поста 1 1 6,0 0,20 0,125 3,97887 20 1,0 590,0 88,0 590,0 88,0 0,00 Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Хт Um Зима: Ст/ПДК Хт Um			0330	Сера диоксид (Ангидрид сернистый)	0.0000390	0,0000000	0.0000	S2377 Control (1) (2) (1)	7 TO STORY A COLUMN			200 A 100 B 100 B	C10 * 600	
2754 Углеводороды предельные алифатическо- го ряда С11-С19 0.0011070 0,0000000 1 0,001 44,5 0,5 0,002 37,7 0,6 + 0 2 128 Вытяжка мастерской поста (пождепо) 1 1 6,0 0,20 0,125 3,97887 20 1,0 590,0 88,0 590,0 88,0 0,00 Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um				Углерод оксид	0.0076320	0,0000000	1	0,002	. C C		- 1			
го ряда С11-С19 + 0 2 128 Вытяжка мастерской поста 1 1 6,0 0,20 0,125 3,97887 20 1,0 590,0 88,0 590,0 88,0 0,00 (пождепо) Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um			2754	Углеводороды предельные алифатическо-	0.0011070	0,0000000	1							
(пождепо)						170							- Sales	
(пождепо)	+	0	2 1	28 Вытяжка мастерской поста 1	1 6,0	0,20 0,125	3,97887	20	1,0	590,0	88,0	590,0	88,0	0,00
						MI 22			83000					
			Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
2000 Trainb Respirative Code Practical Respiration 10.7 0.5 0,100 10.7 0.5			2908	Пыль неорганическая, содержащая менее	0.0049500	0,0000000	2	0,073	25,7	0,5	0,156	16,7	0,5	
70% SiO2				70% SiO2										

+ 0 2 129Вытяжка участка мойки автомобилей (пождепо)	1	1 8,0	0,50	1,389	7,0741	2	20	1,0	645	,0	155,0	645,0	155,0	0,00
Код в-ва Наименование вещества 0301 Азота диоксид (Азот (IV) окси 0304 Азот (II) оксид (Азота оксид 0328 Углерод (Сажа) 0330 Сера диоксид (Ангидрид сернис 0337 Углерод оксид 2754 Углеводороды предельные алифа	д)) тый)	Выброс, (г/л 0.0000700 0.0000110 0.0000040 0.0000130 0.0025530 0.0003710	0, 0, 0, 0, 0, 0,	6poc, (т/г) 0000000 0000000 0000000 0000000 000000	F J 1 1,5 1 1	Тето:	Ст/ПДК 0,000 0,000 0,000 0,000 0,000 0,000	Xm 52,4 52,4 45,9 52,4 52,4 52,4	Um 0,6 0,6 0,6 0,6 0,6	Зима:	Ст/ПДК 0,000 0,000 0,000 0,000 0,000 0,000	Xm 71,9 71,9 62,9 71,9 71,9 71,9	Um 1,1 1,1 1,1 1,1 1,1	

Выбросы источников по веществам

Вещество: 0124 Кадмий и его соединения

Nº ⊓n.	№ цех	№ ист.	Тип	Учет	Выброс (r/c)	F		Лето	,	- <u>-</u>	Зима	
							Ст/ПДК	Χm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0001450	1	0,0000	1656,70	4,3844	0,0000	1695;84	4,6520
0	1	5	1	-	0.0010640	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	4	1	+	0.0001530	1	0,0000	1409,11	3,5465	0,0000	1437,33	3,7100
0	2	5	1	+	0.0010610	1	0,0001	3062,80	4,8176	0,0000	3142,41	5,1281
Итог	o:				0.0012140		0,0001		·	0,0001		

Вещество: 0140 Медь и его соединения (в пересчете на медь)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето	-		Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0010000	1	0,0002	1656,70	4,3844	0,0002	1695,84	4,6520
0	1	5	1	-	0.0080000	1	0,0003	3494,24	6,0080	0,0003	3565,84	6,3263
0	2	4	1.	÷	0.0011040	1	0,0003	1409,11	3,5465	0,0003	1437,33	3,7100
0	2	5	1	+	0.0076400	1	0,0004	3062,80	4,8176	0,0003	3142,41	5,1281
Итог	0:				0.0087440		0,0007			0,0006		

Вещество: 0164 Никель оксид

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето	_		Зима	
					•		Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.1291997	1	0,0077	1656,70	4,3844	0,0073	1695,84	4,6520
0	1	5	1	-	0:9504460	1	0,0104	3494,24	6,0080	0,0100	3565,84	6,3263
0	2	4	1	+	0.1369270	1	0,0113	1409,11	3,5465	0,0109	1437,33	3,7100
0	2	5	1	+	0.9475740	1	0,0135	3062,80	4,8176	0,0129	3142,41	5,1281
Итог	0:				1.0845010		0,0248			0,0237		

Вещество: 0183 Ртуть (Ртуть металлическая)

Nº	Nº	Nº	Тип	Учет		F		Лето			Зима	
nл.	цех	ист.			(r/c)							
							Cm/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0001550	1	0,0002	1656,70	4,3844	0,0001	1695,84	4,6520
0	1	5	1	-	0.0010830	1	0,0002	3494,24	6,0080	0,0002	3565,84	6,3263
0	1	123	1	-	0.0000202	1	0,0000	1603,38	8,1379	0,0000	1631,56	8,7327
0	2	3	1	+	0.0000260	- 1	0,0000	1847,22	5,0588	0,0000	1896,26	5,4356
0	2	4	1	+	0.0001530	1	0,0002	1409,11	3,5465	0,0002	1437,33	3,7100
0	2	5	1	+	0.0010610	1	0,0003	3062,80	4,8176	0,0002	3142,41	5,1281
0	2	123	1	+	0.0000230	1	0,0000	1784,23	9,6133	0,0000	1807,49	10,2041
Итог	0:			•	0.0012630		0,0005			0,0005		

Вещество: 0184 Свинец и его соединения

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето		-	Зима	
							Cm/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0036460	1	0,0022	1656,70	4,3844	0,0021	1695,84	4,6520
0	1	5	1	-	0.0268210	1	0,0029	3494,24	6,0080	0,0028	3565,84	6,3263
0	2	4	1	+	0.0038640	1	0,0032	1409,11	3,5465	0,0031	1437,33	3,7100
0	2	5	1	+	0.0267400	1	0,0038	3062,80	4,8176	0,0036	3142,41	5,1281
Итог	0:				0.0306040		0,0070			0,0067		

Вещество: 0228 Хрома трехвалентные соединения (в пересчете на хром)

		рещ	CCID	J. VZZ	O Apolita ip	CVD	anchinbic	соединег	ими (в пер	octore na	Apolity	
№ пл.	N₂ цex	№ ист.	l	Учет	Выброс (г/с)	F		Лето	¨		Зима	1
Ĺ							Ст/ПДК	Χm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
_0	1	4	1	-	0.0010000	1	0,0001	1656,70	4,3844	0,0001	1695,84	4,6520
0	1	5	1	-	0.0102000	1	0,0001	3494,24	6,0080	0,0001	3565,84	6,3263
0	2	4	1	+	0.0014720	1	0,0001	1409,11	3,5465	0,0001	1437,33	3,7100

0	2	5	1	+	0.0101870	0,0001	3062,80	4,8176	0,0001	3142,41	5,1281
Итог	o:				0.0116590	0,0003			0,0003		

Вещество: 0229 Цинк и его соединения (в пересчете на цинк)

№ пл.	№ цех	№ ист.		Учет	Выброс (г/с)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (M/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1		0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	1	5	1		0.0340000	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	4	1	+	0.0049680	1	0,0000	1409,11	3,5465	0,0000	1437,33	3,7100
0	2	5	1	+	0.0343800	1	0,0000	3062,80	4,8176	0,0000	3142,41	5,1281
Итог	 				0.0393480		0,0000			0,0000		

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
пл.	цех	ист.			(г/c)							
							Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	, Xm	Um (м/с)
0	1	4	1	-	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	5	1		206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	36	1	%	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0	1	37	1	%	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875
0	1	123	1		44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	4	1	+	14.8600000	1	0,0490	1409,11	3,5465	0,0471	1437,33	3,7100
0	2	5	1	+	155.2680000	1	0,0888	3062,80	4,8176	0,0844	3142,41	5,1281
_ 0 _	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	125	_ 1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
Ω	2	126	1	+	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	127	1	+	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	0,5898
0	2	129	_ 1	+	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
Итог	o:				265.8050280		0,5186			0,5396		

Вещество: 0325 Мышьяк и его соединения

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето	·		Зима	
				j			Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1		0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	1	5	1	-	0.000000e0	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	4	1	+	0.0000610	1	0,0000	1409,11	3,5465	0,0000	1437,33	3,7100
0	2	5	1	+	0.0004240	1	0,0000	3062,80	4,8176	0,0000	3142,41	5,1281
Итог	0:	- -			0.0004850		0,0000			0,0000		_

Вещество: 0328 Углерод (Сажа)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F					Зима	
Ŀ							Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.6730000	1,5	0,0040	1449,61	4,3844	0,0038	1483,86	4,6520
0	1	5	1	-	4.9540000	1,5	0,0054	3057,46	6,0080	0,0052	3120,11	6,3263
0	2	4	1	+	0.7140000	1,5	0,0059	1232,97	3,5465	0,0057	1257,66	3,7100
0	2	5	1	+	4.9380000	1,5	0,0071	2679,95	4,8176	0,0067	2749,61	5,1281
0_	2	124	1	+	0.0000210	1,5	0,0002	50,59	0,6502	0,0001	66,14	1,1179
0	2	125	1	+	0.0000210	1,5	0,0002	50,59	0,6502	0,0001	66,14	1,1179
0	2	126	1	_ +	0.0000210	1,5	0,0001	87,38	1,1230	0,0001	87,85	1,1498
0	2	127	1	+	0.0000130	1,5	0,0002	38,90	0,5000	0,0002	32,95	0,5898
0	2	129	1	+	0.0000040	1,5	0,0000	45,87	0,5748	0,0000		
Итог	o: <u> </u>				5.6520800		0,0136			0,0129		

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Nº	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
пл.	цех	ист.			(170)		Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	5	1	-	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	2	3	1	+	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	72.1860000	1	0,1190	1409,11	3,5465	0,1144	1437,33	3,7100
0	2	5	1	+	499.5470000	1	0,1428	3062,80	4,8176	0,1358	3142,41	5,1281
0	2	124	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итог	o:			-	576.9813010		0,2673			0,2553		

Вещество: 0337 Углерод оксид

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
пл.	цех	ист.			(r/c)						(751)/00000700	
					8		Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	11.0700000	1	0,0013	1656,70	4,3844	0,0013	1695,84	4,6520
0	1	5	1	-	53.3700000	1	0,0012	3494,24	6,0080	0,0011	3565,84	6,3263
0	1	36	1	%	0.0036920	1	0,0013	37,05	0,5000	0,0024	28,68	0,6921
0	1	37	1	%	0.0036920	1	0,0082	17,10	0,5000	0,0092	17,15	0,7875
0	1	123	1	-	134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	8,7327
0	2	3	1	+	38.6640000	1	0,0037	1847,22	5,0588	0,0035	1896,26	5,4356
0	2	4	1	+	6.3690000	1	0,0011	1409,11	3,5465	0,0010	1437,33	3,7100
0	2	5	1	+	44.0720000	1	0,0013	3062,80	4,8176	0,0012	3142,41	5,1281
0	2	123	1	+	157.0470000	1	0,0192	1784,23	9,6133	0,0186	1807,49	10,2041
0	2	124	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	125	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	126	1	+	0.0132820	1	0,0009	99,86	1,1230	0,0009	100,40	1,1498
0	2	127	1	+	0.0076320	1	0,0018	44,46	0,5000	0,0025	37,66	0,5898
0	2	129	1	+	0.0025530	1	0,0005	52,42	0,5748	0,0003	71,89	1,0729
Итог							0,0424			0,0425		

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

№ пл.	Nº цех	№ ист.		Учет	Выброс (г/с)	F					Зима	
							Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0002090	1	0,0025	1656,70	4,3844	0,0024	1695,84	4,6520
0	1	5	1	-	0.0013720	1	0,0030	3494,24	6,0080	0,0029	3565,84	6,3263
0	1	123	1	-	0.0000019	1	0,0000	1603,38	8,1379	0,0000	1631,56	8,7327
0	2	3	1	+	0.0001800	1	0,0017	1847,22	5,0588	0,0016	1896,26	5,4356
0	2	4	1	+	0.0002690	1	0,0044	1409,11	3,5465	0,0043	1437,33	3,7100
0	2	5	1	+	0.0016860	1	0,0048	3062,80	4,8176	0,0046	3142,41	5,1281
0	2	123	1	+	0.0000020	1	0,0000	1784,23	9,6133	0,0000	1807,49	10,2041
Итог	0:				0.0021370		0,0110			0,0105		

Вещество: 2902 Твердые частицы

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	2	4	1	+	1.2190000	3	0,0100	704,56	3,5465	0,0097	718,66	3,7100
0	2	5	1	+	8.4350000	3	0,0121	1531,40	4,8176	0,0115	1571,21	5,1281
Итог					9.6540000		0,0221			0,0211		1000000 H

Вещество: 2904 Мазутная зола теплоэлектростанций

№ пл.	Nº цех	№ ист.	550000000000000000000000000000000000000	Учет	Выброс (г/с)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (M/c)
0	1	4	1	-	0.3930000	1,5	0,0175	1449,61	4,3844	0,0167	1483,86	4,6520

Ито	FO:				2.8220000	0,0485			0,0463		
0	2	5	1	+	2.4660000 1,5	0,0264	2679,95	4,8176	0,0251	2749,61	5,1281
0	2	4	1	+	0.3560000 1,5	0,0220	1232,97	3,5465	0,0212	1257,66	3,7100
0	1	5	1	-	2.8870000 1,5	0,0237	3057,46	6,0080	0,0228	3120,11	6,3263

Выбросы источников по группам суммации

Группа суммации: 6009

Nº nn.	№ цех	№ ист.	Тип	Учет	Код в-ва	Выброс (r/c)	F	•	Лето			Зима	
1111,	Hey	MC1.			D-64	(110)	.	Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/c)
0	1	4	1	-	0301	41.6600000	1	0.0988	1656,70	4,3844	0.0944	1695,84	4,6520
0	1	4	1	-	0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695.84	4,6520
ō	1	5	1	-	0301	206.5800000	$\overline{}$	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	5	1	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	1	36	1	%	0301	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0	1	37	1	%	0301	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875
0	1	123	1	-	0301	44,7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	0301	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	3	1	+	0330	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	0301	14.8600000	1	0,0490	1409,11	3,5465	0,0471	1437,33	3,7100
0	2	4	1	+	0330	72.1860000	1	0,1190	1409,11	3,5465	0,1144	1437,33	3,7100
0	2	5	1	+	0301	155.2680000	1	0,0888	3062,80	4,8176	0,0844	3142,41	5,1281
0	2	5	1	+	0330	499.5470000	1	0,1428	3062,80	4,8176	0,1358	3142,41	5,1281
0	2	123	1	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	1	+	0301	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	124	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0301	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	125	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0301	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	126	1	+	0330	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0301	0.0002080	1	0,0010	44,46	. 0,5000	0,0014	37,66	0,5898
0	2	127	1	+	0330	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0301	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
0	2	129	1	+	0330	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итого):					842.7863290		0,7859			0,7949		

Группа суммации: 6030

№ пл.	Nº цex	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F					Зима	
	,							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0184	0.0036460	1	0,0022	1656,70	4,3844	0,0021	1695,84	4,6520
0	1	4	1	-	0325	0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	_1_	5	1	-	0184	0.0268210	1	0,0029	3494,24	6,0080	0,0028	3565,84	
0	1	5	1	-	0325	0.000000e0	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	4	1	+	0184	0.0038640	1	0,0032	1409,11	3,5465	0,0031	1437,33	3,7100
0	2	4	1	+	0325	0.0000610	1	0,000	1409,11	3,5465	0,0000	1437,33	3,7100
0	2	5	1	+	0184	0.0267400	1	0,0038	3062,80	4,8176	0,0036	3142,41	5,1281
0	2	5	1	+	0325	0.0004240	1	0,0000	3062,80	4,8176	0,0000	3142,41	5,1281
Итого);			•		0.0310890		0,0070	•	·	0,0067		

Группа суммации: 6034

№ пл.	Nº цех	Nº ист.	Тип	Учет	Код в-ва	Выброс (r/c)	F	-	Пето			Зима	
							Ì	Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (м/c)
0	1	4	1	-	0184	0.0036460	1	0;0022	1656,70	4,3844	0,0021	1695,84	4,6520
0	1	4	1	1	0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	5	1	-	0184	0.0268210	1	0,0029	3494,24	6,0080	0,0028	3565,84	6,3263
0	1	5	_1_	-	0330	1044,3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	2	3	1	+	0330	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	0184	0.0038640	1	0,0032	1409,11	3,5465	0,0031	1437,33	3,7100
0	2	4	1	+	0330	72.1860000	1	0,1190	1409,11	3,5465	0,1144	1437,33	3,7100
0	2	5	1	+	0184	0.0267400	1	0,0038	3062,80	4,8176	0,0036	3142,41	5,1281
0	2	5	1	+	0330	499.5470000	1	0,1428	3062,80	4,8176	0,1358	3142,41	5,1281
0	2	124	. 1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0330	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0330	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0330	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итого);	, and the second	, and the second	, and the second		577.0119050		0,2743			0,2620	·	

Группа суммации: 6204

№ пл.	иех	№ ист.	Тип	Учет	Код в-ва	Выброс (r/c)	F		Лето			Зима	
	.,					()	ľ	Ст/ПДК	Χm	Um (M/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0301	41.6600000	1	0,0988	1656,70	4,3844	0.0944	1695,84	4,6520
Ō	1	4	1	-	0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	4	1	-	2904	0.3930000	1,5	0,0175	1449,61	4,3844	0,0167	1483,86	4,6520
_ 0	1	5	1	,	0301	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	5	1	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	1	5	1	•	2904	2,8870000	1,5	0,0237	3057,46	6,0080	0,0228	3120,11	6,3263
0	1	36	_1	%	0301	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0	1	37	1	%	0301	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	
0	1_1	123	1	-	0301	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	0301	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	3	1	+	0330	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	0301	14.8600000	1	0,0490	1409,11	3,5465	0,0471	1437,33	3,7100
_0	2	4	1	+	0330	72.1860000	1	0,1190	1409,11	3,5465	0,1144	1437,33	3,7100
0	2	4	1	+	2904	0.3560000	1,5	0,0220	1232,97	3,5465	0,0212	1257,66	3,7100
0	2	5	1	+	0301	155.2680000	1	0,0888	3062,80	4,8176	0,0844	3142,41	5,1281
0	2	5	1	+	0330	499.5470000	1	0,1428	3062,80	4,8176	0,1358	3142,41	5,1281
0	2	5	_1_	+	2904	2.4660000	1,5	0,0264	2679,95	4,8176	0,0251	2749,61	5,1281
0	2	123	1	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	1_	+	0301	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	124	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0301	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	125	1_	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	_0301	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	126	1	+	_0330	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	_1_	+	0301	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	0,5898
0	2_	127	1	+	0330	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	_1_	+	0301	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
0	2	129	1	+	0330	0.0000130	1	0,000	52,42	0,5748	0,0000	71,89	1,0729
Итого	<u>: </u>					845.6083290		0,8344			0,8412		_

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре,	*Поправ. коэф. к ПДК/ОБУ В	Фоновая концентр.			
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
0124	Кадмий и его соединения	ПДК м/р	0.0030000	0.0030000	1	Да	Да
	Медь и его соединения (в пересчете на медь)	ПДК м/р	0.0030000	0.0030000	1	Нет	Нет
0164	Никель оксид	ПДК м/р	0.0100000	0.0100000	1	Нет	Нет
	Ртуть (Ртуть металлическая)	ПДК м/р	0.0006000	0.0006000	1	Нет	Нет
	Свинец и его соединения	ПДК м/р	0.0010000	0.0010000	1	Да	Да
	Хрома трехвалентные соединения (в пересчете на хром)	ОБУВ	0.0100000	0.0100000	1	Нет	Нет
0229	Цинк и его соединения (в пересчете на цинк)	ПДК м/р	0.2500000	0.2500000	1	Нет	Нет
	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
0325	Мышьяк и его соединения	ПДК м/р	0.0080000	0.0080000	1	Да	Да
0328	Углерод (Сажа)	ПДК м/р	0.1500000	0.1500000	1	Нет	Нет
	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да
0703	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с * 10	0.0000050	0.0000500	1	Да	Да
2902	Твердые частицы	ПДК м/р	0.3000000	0.3000000	1	Да	Да
	Мазутная зола теплоэлектрос- танций	ПДК м/р	0.0200000	0.0200000	1	Нет	Нет
6009	Группа сумм. (2) 301 330	Группа	•	-	1	Да	Да
	Группа сумм. (2) 184 325	Группа	• "	-	1	Да	Да
6034	Группа сумм. (2) 184 330	Группа		-	1	Да	Да
	Группа суммации (3) 301 330 2904	Группа	-	-	1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

№ поста	Наименование	Координа	ты поста
		x	у.
1	ул.Кедышко, 45	-480	5800

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013
0337	Углерод оксид	0.257	0.257	0.257	0.257	0.257
0703	Бенз/а/пирен (3,4-Бензпирен)	7.7E-7	7.7E-7	7.7E-7	7.7E-7	7.7E-7
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
2 ул.	Тростенецкая, 4	•			-4185	6:

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6			
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2902	Твердые частицы	0.037	0.037	0.037	0.037	0.037			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
3 ул.	Каховская, 72				-5200	516			

Код в-ва	Наименование вещества	L	Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0,073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
4 ул.	Жилуновича, 3				-730	-6

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6			
0184	Свинец и его соединения	8.2E-5	8.2E-5	8,2E-5	8.2E-5	8.2E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0,028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	1.315	1,315	1.315	1.315	1.315			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2902	Твердые частицы	0.052	0.052	0.052	0.052	0.052			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
5 ул.	Скорины, 18		-		2044	4:			

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6			
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
6 ул.	Селицкого, 33	-			4562	-53			

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		

0330 0337 0703	Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен)	0.028 0.659 1.75E-6	0.028 ¹ 0.659 1.75E-6	0.028 0.659 1.75E-6	0.028 0.659 1.75E-6	0.028 0.659 1.75E-6
2902 2904	Твердые частицы Мазутная зола теплоэлектростанций	0.06 1E-7	0.035 1E-7	0.083	0.055	0.044
7ул		15-7	15-7	1E-7	1E-7 -3840	1E-7

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6			
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2902	Твердые частицы	0.037	0.037	0.037	0.037	0.037			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
8пр.	Партизанский, 66 А		- 124 7		-345	-10			

Код в-ва	Наименование вещества		Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад				
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6				
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5				
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081				
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7				
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028				
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315				
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6					
2902	Твердые частицы	0.052	0.052			1.75E-6				
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	0.052 1E-7	0.052 1E-7	0.052 1E-7				

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области Расчетные площадки

Nº	Тип	Пол	ное описа	ние плоц	цадки	Ширина, (м)	Ша (м		Высота, (м)	Комментарий
		Коорд серед 1-й стор	цины	-	инаты дины юны (м)		•	-,	(,	
		X	Y	X	Y		X	Υ		
1	Заданная	-9000	-162	9000	-162	18000	200	200	2	

Расчетные точки

Nº	Координа	аты точки	Высота	Тип точки	Комментарий
] [(<u>и) </u>	(M)		
	X	Υ			
4	533,00	405,00	2	на границе СЗЗ	
5	840,00		2	на границе С33	
6	1010,00		2	на границе С33	
_ 7	920,00	-542,00	2	на границе С33	
8	533,00			на границе С33	
_ · 9	233,00	-468,00		на границе С33	-
10	42,00	-162,00		на границе СЗЗ	
_ 11	<u>-1</u> 9,00	404,00	2	на границе СЗЗ	
1	966,00	114,00		на границе жилой зоны	
2	1387,00	-96,00		на границе жилой зоны	
3	638,00	-714,00		на границе жилой зоны	

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0.01

Код	Наименование	Сумма Ст/ПДК
0124	Кадмий и его соединения	0.0007885
0140	Медь и его соединения (в пересчете на медь)	0.0006377
0183	Ртуть (Ртуть металлическая)	0.0004847
	Хрома трехвалентные соединения (в пересчете на хром)	0.0002551
0229	Цинк и его соединения (в пересчете на цинк)	0.0000344
0325	Мышьяк и его соединения	0.0000257

Результаты расчета по веществам (расчетные точки)

Вещество: 0164 Никель оксид

				31831 3 10 1	11111103110	711.011.64			
Nº	Коорд		Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	<u> </u>	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
2	1387		2	0.01	257	3,70	0.000	0.000	4
11	966	114	2	9.7e-3	234	3,70	0.000	0.000	4
_ 5	840	173	2	9.0e-3	224	3,70		0.000	3
11		404	2	8.7e-3	157	3,70	0.000	0.000	3
4	533	405	2	8.5e-3	196	3,70	0.000	0.000	3
6	1010	162	2	7.7e-3	253	3,70	0.000	0.000	3
7	920		2	6.5e-3	285	3,70	0.000	0.000	3
3	638	<u>-714</u>	2	4.4e-3	315	3,70		0.000	4
10	-42		2	3.4e-3	122	3,70		0,000	3
8	533	-600	2	2.4e-3	314	3,70	0.000	0.000	$-\frac{1}{3}$
9	233	-468	2	1.3e-3	44	4,80	0.000	0.000	3

Вещество: 0184 Свинец и его соединения

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр.	Напр. ветра	, • I	Фон (д.	Фон до искл.	Тип
2	1387	-96	2	0.09				0.083	<u>точки</u>
1	966	114	2	0.09	234			0.083	$\frac{-4}{4}$
11	19	404	2	0.09	157		0.083	0.083	
5	840	173	2	0.09	224	3,70	0.083	0.083	3
4	533	405	2	0.08	196	3,70	0.083	0.083	3
6	1010	-162	2	0.08	253		0.083	0.083	3
7	920		2	0.08	285			0.083	$\frac{}{3}$
3	638	-714	2	0.08	315			0.083	4
10		-16 2	2	0.08	122			0.083	- i -
8	533	600	. 2	0.08	314			0.083	3
9	233	468	2	0.08	44		0.083	0.083	3

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	CKOp.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(м)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
2	1387		2	0.35	263	5,00	0.245	0.301	4
7	920	542	2	0.34	309	5,00	0.286	0.305	
5	840	173	2	0.33	226	3,90	0.277	0.303	 3
_1	966	114	2	0.33	237	4,00	0.272	0.303	- 4 -
4	533	405	2	0.33	195	1,90	0.301	0.309	3
_11		404	2	0.32	154	1,90	0.303	0.310	3
6	1010	162	2	0.32	255	1,90	0.303	0.309	
10	-42	-162	2	0.32	86	1,90	0.311	0.313	3
3	638	-714	2	0.32	316	1,90	0.309	0.312	4
9	233	-468	2	0.32	32	1,90	0.312	0.314	$\frac{-3}{3}$
_8	533	-600	2	0.32	348	1,90	0.311	0.312	3

Вещество: 0328 Углерод (Сажа)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)		Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
2	1387	-96	2	6.4e-3		3,70			4
1	966	114	2	5.7e-3		3,70			4
_ 5	840	173	2	5.4e-3	224	3,70	0.000		3
11		404	2	5.0e-3	157	3,70	0.000	0.000	3
4	533	405	2	5.0e-3	196			0.000	3
6	<u>10</u> 10	-162	2	4.6e-3	253			0.000	3
7	920	-542	2	4.0e-3	285	3,70	0.000	0.000	3
3	638	714	2	2.8e-3	315	3,70	0.000	0.000	4
10	42	-162	2	2.2e-3	122	3,70	0.000	0.000	3
8	533	-600	2	1.5e-3	314	3,70	0.000	0.000	3
9	233	-4 68	2	8.9e-4	43		0.000	0.000	3

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

			20. 000	<u> — о</u> сра дио					
Nº	Коорд	Коорд		Концентр.		Скор.	Фон (д.	Фон до	Тип
	Х(м)	Ү(м)	(M)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
2	1387	-96	2	0.13	257	3,70		0.054	4
1	966	114	2	0.11	234			0.054	4
5	840	173	2	0.11	224		0.011	0.054	3
11	19	404	2	0.10	157		0.011	0.054	3
4	533	405	2	0.10	196		0.011	0.054	3
6	1010	-162	2	0.10	253		0.016	0.054	3
7	920	-542	2	0.09	285		0.023	0.054	3
3	638	-714	2	0.08	315		0.034	0.054	4
10	42	-162	2	0.08	122			0.055	3
8	533	-600	2	0.07	314		0.044	0.054	3
9	233	-468	2	0.06	43		0.048	0.055	$\frac{3}{3}$

Вещество: 0337 Углерод оксид

				<u> </u>	зысрод	CKCNH			
Nº	Коорд			Концентр.	Hanp.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	<u> </u>	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
9	233	-468	2	0.22	61	5,00	0.223	0.224	3
10	-42		2	0.22	100	5,00	0.221	0.224	3
8	533	600	2	0.22	8	5,00	0.218	0.219	3
3	638	-714	2	0.22	352	5,00	0.216	0.217	4
11	19	404	2	0.21	139	5,00	0.206	0.210	3
7	920	542	2	0.21	308	5,00	0.209	0.210	$\frac{3}{3}$
6	1010	-162	2	0.21	255	5,00	0.204	0.206	3
4	533	405	2	0.21	176	5,00	0.202	0.204	$\frac{3}{3}$
5	840	173	2	0.21	247	1,40	0.203	0.204	3
1_	966	114	2	0.20	226	5,00	0.201	0.203	4
2	1387	96	2	0.20	259	5,00	0.196	0.200	$-\frac{1}{4}$

Вещество: 0703 Бенз/а/пирен (3.4-Бензпирен)

Nº	Коорд	Коорд	Высота	Концентр.		4-вензпире Скор.	л., Фон (д.	<u>Фан ==</u>	T
	X(M)	Y(M)	(M)		ветра			Фон до искл.	Тип точки
2	1387	-96	2	0.04	258			0.033	4
_ 1	966	114	2	0.04	235	-11		0.033	$\frac{-4}{4}$
5	840	173	2	0.04	225			0.033	$\frac{-3}{3}$
4	533	405	2	0.04	196		0.033	0.033	3
11	19	404	2	0.04	157		0.033	0.034	 3
_6	1010	162	2	0.04	253		0.033	0.034	3
<u> 7 · </u>	920	-542	2	0.04	285		0.033	0.034	3
3	638	-714	2	0.04	315		0.034	0.034	4
10	42	-162	2	0.04	122		0.034	0.034	3
8	533	-600	2	0.03	314		0.034	0.034	3
9	233	468	2	0.03	41	4,30	0.034	0.034	3

Высота Концентр. (м) (д. ПДК) Nº Коорд Коорд Напр. Фон (д. Скор. Фон до Тип (M) 2 2 2 **Y(м)** 173 Х(м) ветра ветра пдк) искл. точки 5 840 0.18 224 4,50 0.167 0.167 3 10 -42 -162 0.18 122 3,70 0.172 0.172 3 11 -19 404 0.18 135 5,00 0.171 0.171 3 966 2 0.18 1 114 235 4,50 0.165 0.165 4 533 4 405 0.18 0.167 196 3,80 3 0.167

Вещество: 2902 Твердые частицы

	Вещество: 2904 Мазутная зола теплоэлектростанций												
8	533	<u>-600</u>	2	0.17			0.173	0.173	3				
3	638	714	2	0.17	315	. 3,70	0.166	0.166	4				
6	1010	-162	2	0.17	254	3,90	0.165	0.165	3				
7	920	542	2	0.17	285	3,70	0.165	0.165	3				
2	1387		2	0.18	260	4,20	0.164	0.164	4				
9	233	468	2	0.18	44	4,90	0.172	0.172	3				

	 _		BO: 29U4		<u>тная зола теплоэлектростанций</u>						
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип		
	Х(м)	Ү(м)	(M)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки		
2	1387	-96	2	0.02	257	3,70	0.000	0.000	4		
1	966	114	2	0.02	234	3,70	0.000	0.000			
_ 5	840	173	2	0.02	224	3,70	0.000	0.000	3		
11		404		0.02	157	3,70	0.000	0.000	- 3 .		
4	533	405	2	0.02	196	3,70	0.000	0.000	3		
6	1010	-162	2	0.02	253	3,70	0.000	0.000	- 3 -		
7	920	-542	2	0.01	285	3,70	0.000	0.000	3		
3	638	-714	2	0.01	315	3,70	0.000	0.000	4		
10	42	-162	2	8.2e-3	122	3,70	0.000	0.000	3		
8	533	-600	2	5.8e-3		3,70	0.000	0.000	3		
9	233	-468	2	3.3e-3	43	4,80	0.000	0.000	3		

Nº	Коорд Х(м)	Коорд Ү(м)	ещество: Высота (м)	Концентр.	ппа сумм. Напр. ветра	Скор.	Фон (д. ПДК)	Фон до искл.	Тип
2	1387	-96	2	0.45	259		0.239	0.355	4
_1]	966	114	2	0.44	235		0.277	0.356	4
5	840	173	2	0.44	225	3,70	0.286	0.357	 3
4	533	405		0.41	196		0.345	0.362	3
_11	-19	404	2	0.41	157	1,90	0.346	0.364	3
6	1010	-162	2	0.41	254	3,70	0.290	0.357	3
7	920	-542	2	0.41	285	3,70	0.309	0.359	3
3	638	-714	2	0.39	315	3,70	0.329	0.361	$-\frac{3}{4}$
10	-42	-162	2	0.38	121	1,90	0.363	0.368	3
_8	533	-600	2	0.38	314	3,70	0.345	0.362	3
9	233	-468		0.37	36	1,90	0.366	0.368	- 3 -

		B	ещество:	6030 Гру	/ппа сумм.	(2) 184 325			
N º	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
2	1387	-96	2	0.09		3,70	0.082	0.083	4
1	966	114	2	0.09		3,70	0.082	0.083	4
11	-19	404	2	0.09	157	3,70	0.083	0.083	 -
5	840	173	2	0.09	224	3,70	0.083	0.083	 3
4	533	405	2	0.09	196	3,70	0.083	0.083	3
<u>6</u>	1010	<u>-162</u>	2	0.08	253	3,70	0.083	0.083	$\frac{3}{3}$
7	920	-542	2	0.08	285	3,70	0.083	0.083	3
3	638	-714	2	0.08	315	3,70	0.083	0.083	 4
10	42	-162	2	0.08	122	3,70	0.083	0.083	3
8	533	-600	2	0.08	314	3,70	0.083	0.083	3
<u>9</u> _	233	-468	2	0.08	44	4,80	0.083	0.083	3

Вещество: 6034 Группа сумм. (2) 184 330

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип				
	Х(м)	<u> </u>	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки.				
2	1387	-96	2	0.20	257	3,70	0.074	0.137	4				
1	966	114	2	0.19	234	3,70	0.087	0.137	4				
5	840	173	2	0.19	224	3,70	0.091	0.137	3				
11	-19	404	2	0.19	157	3,70	0.093	0.137	3				
4	533	405	2	0.19	196	3,70	0.094	0.137	3				
6	1010	-162	2	0.18	253	3,70	0.099	0.137	3				
7	920	-542	2	0.18	285	3,70	0.105	0.137	3				
3	638	-714	2	0.16	315	3,70	0.117	0.137	4				
10	-42	-162	2	0.16	122	3,70	0.122	0.137	3				
. 8	533	-600	2	0.15	314	3,70	0.127	0.137	3				
9	233	-468	2	0.15	43		0.131	0.137	3				

Вещество: 6204 Группа суммации (3) 301 330 2904

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(м)			" [пдк)	искл.	точки
2	1387	-96	2	0.28	258	4,10	0.140	0.215	4
1	966	114	2	0.27	235	3,70	0.164	0.216	4
5	840	173	2	0.27	225	3,70	0.170	0.216	3
6	1010	-162	2	0.26	254	3,70	0.173	0.216	3
4	533	405	2	0.25	196	1,90	0.208	0.220	3
11	-19	404	2	0.25	157	1,90	0.209	0.220	3
7	920	-542	2	0.25	285	3,70	0.185	0.217	3
3	638	-714	2	0.24	315	3,70	0.198	0.219	4
10	-42	-162	2	0.24	121	1,90	0.220	0.223	3
8	533	-600	2	0.23	314	3,70	0.208	0.219	3
9	233	-468	2	0.23	36	· 1,90	0.222	0.223	3

Максимальные концентрации и вклады по веществам (расчетные площадки)

Вещество: 0164 Никель оксид Площадка: 1

THE MAKCHMATILULIY VOULDUTDALII

Поле максимальных концентраций												
Коорд Х(м)		Концен ПД		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения					
	1962		0.02	44	4,90	0.000	0.000					
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %						
	0	2	5		0.01	57,24						
	0	2	4		9.3e-3	42,76						
-1400			0.02	47	4,90	0.000	0.000					
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %						
	0	2	5	ı	0.01	58,13						
	0	2	4		9.1e-3	41,87						
			0.02	47	4,90	0.000	0.000					
	Площадка	і Цех	Источ	ник Вкла	двд. ПДК	Вклад %						
	0	2	5		0.01	55,96						
	0	2	4		9.6e-3	44,04						
						*						

Вещество: 0184 Свинец и его соединения

Площадка: 1

Коорд Х(м)	Коорд Ү(м)	Концент ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
_3800	<u>-162</u>		0.09	91	5,00	0.087	0.089
	Площадка 0 0	цех 2 2	Источ 5 4	нник Вкла	д в д. ПДК 3.2e-3 1.7e-3	Вклад % 3,52 1,80	

-4200	38		0.09	93	5,00	0.087	0.089
	Площадка	Цех	Источник	Вклад	в д. ПДК	Вклад %	<u>.</u>
	0	2	5		3.1e-3	3,42	
	0	2	4		1.5e-3	1,61	
-4000	-162		0.09	91	5,00	0.087	0.088
	Площадка	Цех	Источник	Вклад	в д. ПДК	Вклад %	
	0	2	5		3.2e-3	3,47	
	0	2	4		1.6e-3	1,74	

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Площадка: 1

Поле максимальных концентраций												
ПДК) Фон до	Фон (д. ПДК)	Скор.ветра	р.ветра	(д. Ha	Концентр. (д.	Коорд Ү(м)	Коорд Х(м)					
исключен					<u>ПДК)</u>							
0.213 0.	0.213	5,00	312	.46	0.46	1762	2200					
%	Вклад %	двд. ПДК	Вкла	сточник	Цех Исто	Площадка						
5	16,55	0.08		5	2	0						
6	15,86	0.07		3	-	0						
3	15,53	0.07				0						
0.210 0.	0.210	5,00	309	.45_	0.45		2400					
%	Вклад %	двд. ПДК	Вкла	сточник	Цех Исто	Площадка						
2	17,22	0.08		5	2	0						
0	15,60	0.07		123	2 1:	0						
3	15,53	0.07		3		0						
0.212 0.	0.212	5,00	305	.45	0.45	1562	2400					
%	Вклад %	двд. ПДК	Вкла	сточник	Цех Исто	Площадка						
1	16,61	0.08		5	2	0						
6	15,76	0.07		3	2 :	0						
1	15,61	0.07		123	2 1:	0						
63 0.210 % 62 60 63 0.212 % 61	15,53 0.210 Вклад % 17,22 15,60 15,53 0.212 Вклад % 16,61 15,76	5,00 д в д. ПДК 0.08 0.07 0.07 5,00 д в д. ПДК 0.08 0.07	Вкла 305	сточник 5 123 3	0.45 Цех Исто 2 2 12 2 0.45 Цех Исто 2	0 0 0 -1562 Площадка 0 0	2400					

Вещество: 0328 Углерод (Сажа)

Площадка: 1

		Пол	е макс	имальных ког	нцентраций		
Коорд Х(м)	Коорд Ү(м)	Концен ПД		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
-1200	-1562		0.01	51	4,90	0.000	
	Площадка	і Цех	Исто	ник Вкла	ад в д. ПДК	Вклад %	
	0	2	5	,	6.5e-3	57,41	
	0	2	4	,	4.8e-3	42,56	
	0	2	12	4	1.0e-6	0,01	
	<u>-1562</u>		0.01	48	4,90	0.000	0.000
	Площадка	Цех	Исто	ник Вкла	ад в д. ПДК	Вклад %	
	0	2	5	i	6.3e-3	55,85	
	0	2	4		5.0e-3	44,12	
	0	2	<u>1</u> 2	4	1.1e-6	0,01	
1000	<u>-17</u> 62		0.01	44	4,90	0.000	0.000
	Площадка	Цех	Исто	ник Вкла	ад в д. ПДК	Вклад %	
•	0	2	5		6.5e-3	57,36	
	0	2	4		4.8e-3	42,60	
	0	2	12	4	1.1e-6	0,01	

Вещество: 0330 Сера диоксид (Ангидрид сернистый) Площадка: 1

Коорд Х(м)	Коорд Ү(м)	Концентр ПДК)	. (д.	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
1200	<u>-17</u> 62		0.24	47	4,90	0.011	0.055
	Площадка	а Цех і	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	5	•	0.13	52,49	
	0	2	4	•	0.10	41,31	,
	0	2	3		4.2e-3	1,73	

	-1200	-1962		0.24	44	4,90	0.011	0.055
		Площадка	Цех	Источник	Вклад	в д. ПДК	Вклад %	-
		0	2	5		0.13	53,74	
		0	2	4		0.10	40,14	
		0	_ 2	3		4.1e-3	1,66	
L	-1400	-1962		0.24	47	5,00	0.011	0.054
		Площадка	Цех	Источник	Вклад	в д. ПДК	Вклад %	
		0	2	5		0.13	54,73	
		0	2	4		0.10	39,14	
		0	2	3		4.1e-3	1,67	

Вещество: 0337 Углерод оксид Площадка: 1 Поле максимальных концентраций

Коорд Х(м)		Концен ^а	()		Скор.ветра	Фон (д. ПДК)	Фон до исключения
	962		0.26	53	5,00	0.250	0.255
	Площадка	а Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	12	23	7.1e-3	2,73	
	0	2	3	3	1.2e-3	0,46	
	0	2	4		6.6e-4	0,25	
	562		0.26	77	5,00	0.247	0.252
	Площадка	і Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	12	23 ·	8.6e-3	3,32	
	0	2	3	}	1.9e-3	0,75	•
· · · · · · · · · · · · · · · · · · ·		2	4	<u> </u>	7.4e-4	0,29	
			0.26		5,00	0.243	0.249
	Площадка	і Цех	Исто		двд.ПДК	Вклад %	
	0	2	12	23	8.7e-3	3,41	
	Ō	2	3	}	2.0e-3	0,79	
	0	2	4		8.6e-4	0,34	

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен) Площадка: 1 Поле максимальных концентраций

Коорд Х(м)		Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
	1562		0.04	43	4,90	0.033	0.034
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	4		4.0e-3	9,63	
	0	2	5		3.8e-3	9,08	
	0	2	3_		1.5e-3	3,58	
-1000	1562		0.04	47	4,90	0.032	0.034
	Площадка	ι Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	5		4.0e-3	9,58	
	0	2	4		3.9e-3	9,36	
4000	0	2	3		1.5e-3	3,60	
	1 <u>36</u> 2		0.04	52	4,90	0.033	0.034
	Площадка	ι Цех	Источ	ник Вкла,	двд. ПДК	Вклад %	
	0	2	4		4.0e-3	9,51	
	0	2	5		3.8e-3	9,18	
	0	2	3		1.5e-3	3,51	•

Вещество: 2902 Твердые частицы Площадка: 1 Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концентр. (д. ПДК)		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
4600	5362		0.27			- 0.273	0.273
	Площадка 0	а Цех 0	Источ 0	іник Вкла	д в д. ПДК 0.00	Вклад % 0,00	

 	,					
4400	-5362		0.26		- 0.264	0.264
	Площадка	Цех	Источник	Вклад в д. ПДК	Вклад %	
 	0	Ō	0	0.00	0,00	
4600	-5162		0.26	-	- 0.263	0.263
 •	Площадка	Цех	Источник	Вклад в д. ПДК	Вклад %	
	0	Ō	0	0.00	0.00	

Вещество: 2904 Мазутная зола теплоэлектростанций

Площадка: 1 Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен [*] ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
-1200	-1562		0.04	51	4,90	0.000	0.000
	Площадка	Цех	Источ	іник Вкла	двд. ПДК	Вклад %	
	0	2	5		0.02	57,47	
	0	2	4		0.02	42,53	
-1000	-1562		0.04	48	4,90	0.000	0.000
	Площадка	і Цех	Источ	іник Вкла	двд. ПДК	Вклад %	
	0	2	5		0.02	55,91	
	0	2	4		0.02	44,09	
-1000	-1762		0.04	44	4,90	0.000	0.000
	Площадка	ι Цех	Источ	іник Вкла	двд. ПДК	Вклад %	
	0	2	5		0.02	57,42	
	0	2	4		0.02	42,58	

Вещество: 6009 Группа сумм. (2) 301 330

Площадка: 1 Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до. исключения
2400	1238	· ·	0.60	233	5,00	0.133	0.348
	Площадка	цех Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	5	;	0.21	34,45	
	0	2	4	,	0.13	20,96	
	0	2	3	3	0.07.	12,02	
2200	1438		0.60	226	5,00	0.133	0.349
	Площадка	а Цех	Исто	чник Вкла	адвд. ПДК	Вклад %	
	0	2	5	i	0.21	34,28	
	0	2	4	ļ	0.13	21,12	
	0	2	3	}	0.07	11,87	
2200	1238		0.60	230	5,00	0.136	0.349
	Площадка	а Цех	Исто	чник Вкла	адвд. ПДК	Вклад %	
	0	2	5	5	0.20	33,25	
	0	2	4		0.13	21,69	
	0	2	3	3	0.07	12,26	

Вещество: 6030 Группа сумм. (2) 184 325 Площадка: 1 Поле максимальных концентраций

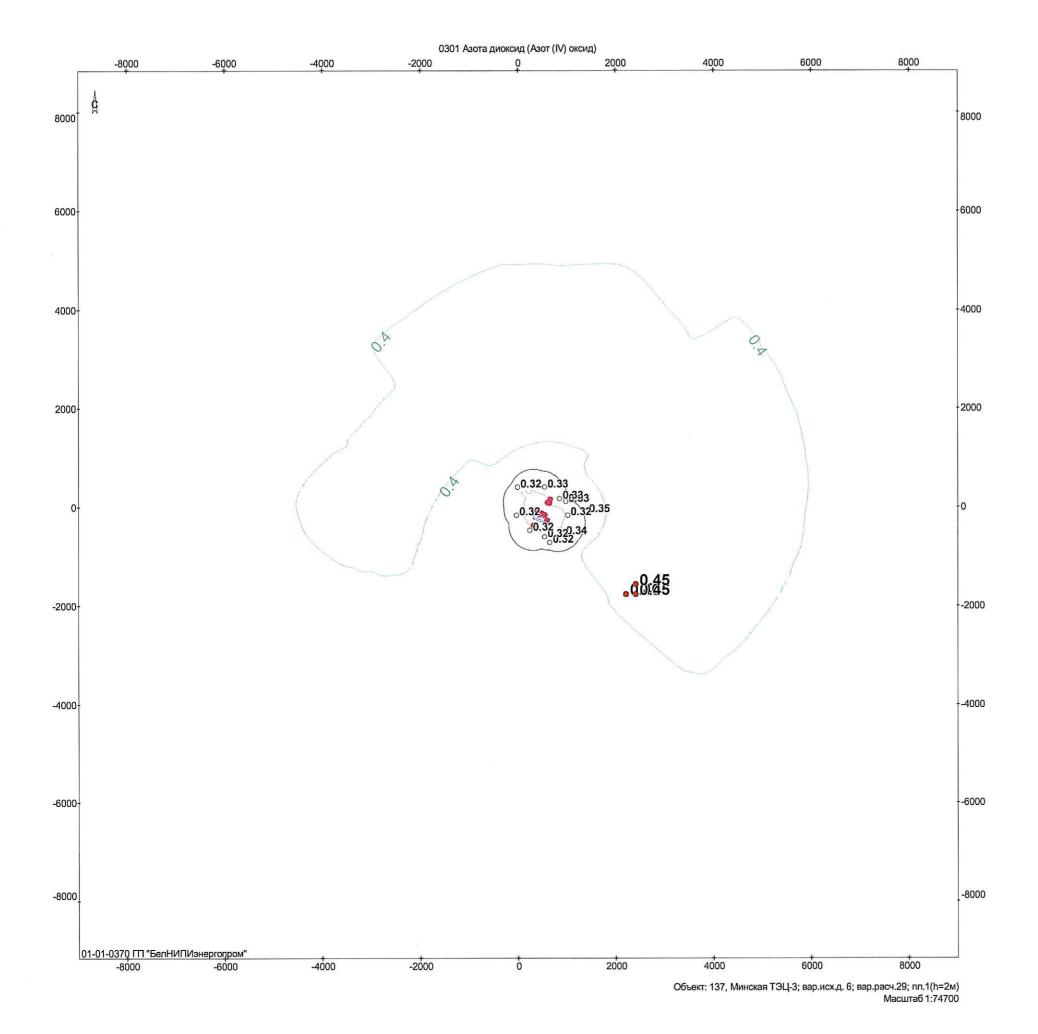
Коорд Х(м)	Коорд Ү(м)	Концентр. (д. ПДК)		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
-3800	-162		0.09	91	5,00	0.087	0.089
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	-
	0	2	5		3.2e-3	3,52	
	0	2	4		1.7e-3	1,80	
-4200	38		0.09	93	.5,00	0.087	0.089
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	5		3.2e-3	3,43	
	0	2	4		1.5e-3	1,61	

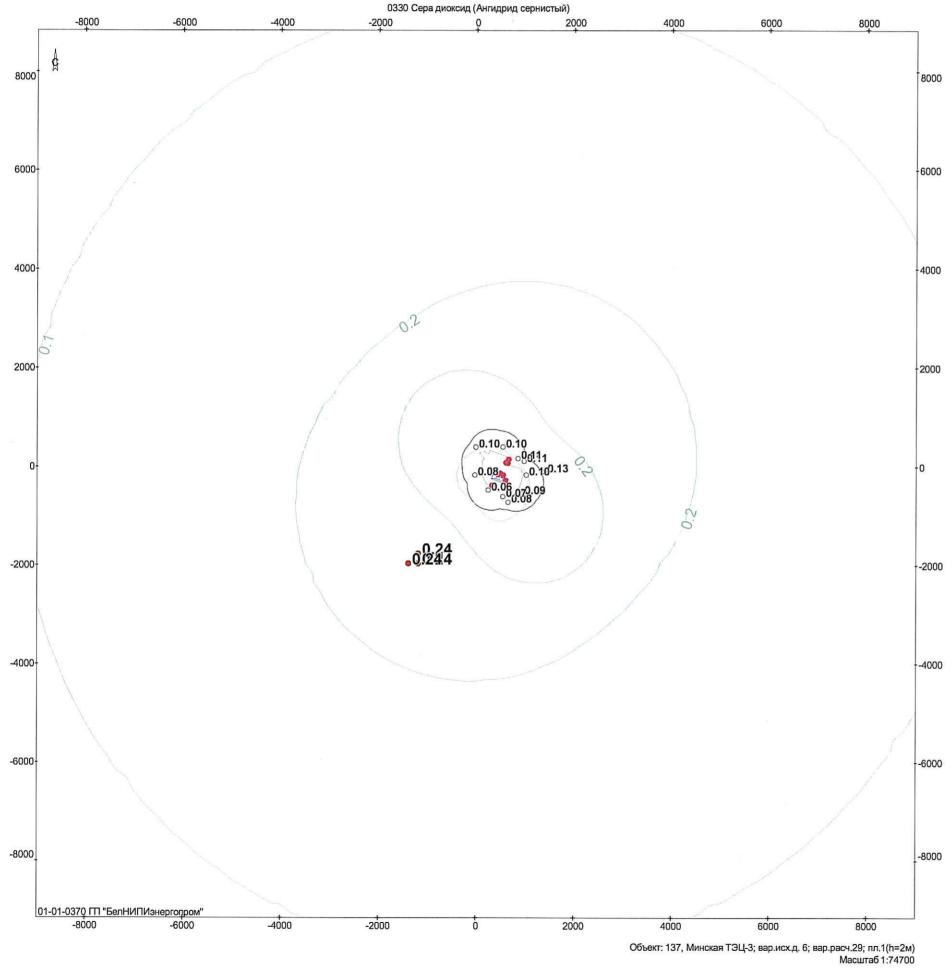
-4000	-162		0.09	91	5,00	0.087	0.088
-	Площадка	Цех	Источник	Вклад в ,	д. ПДК	Вклад %	
	0	2	5		3.2e-3	3,48	
	0	2	4		1.6e-3	1,75	

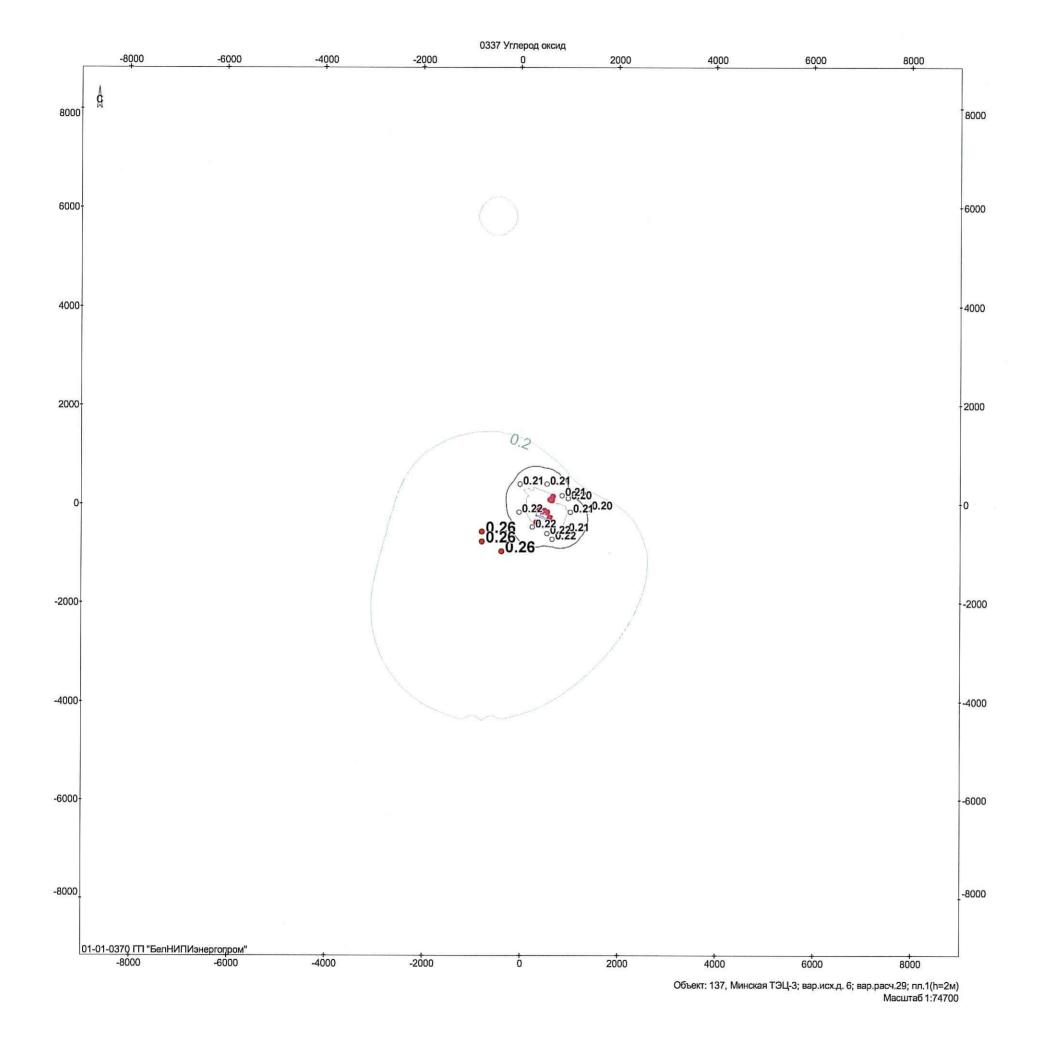
Вещество: 6034 Группа сумм. (2) 184 330

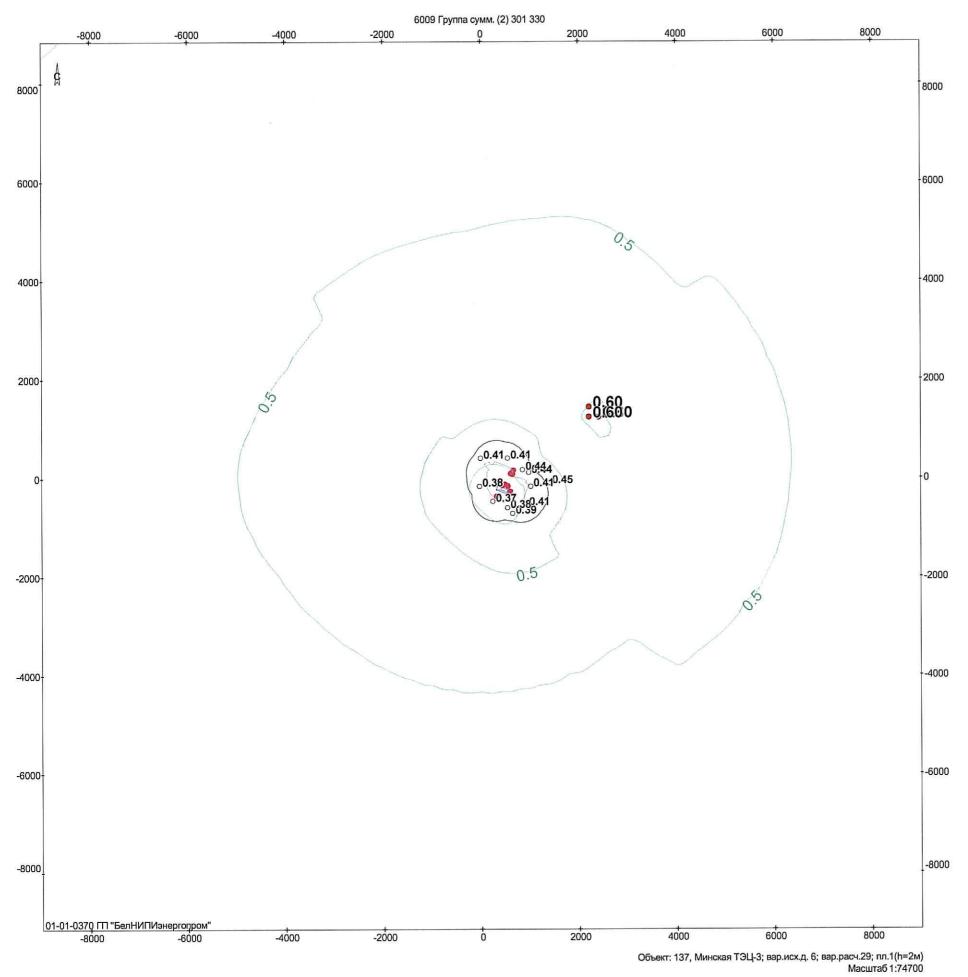
Площадка: 1

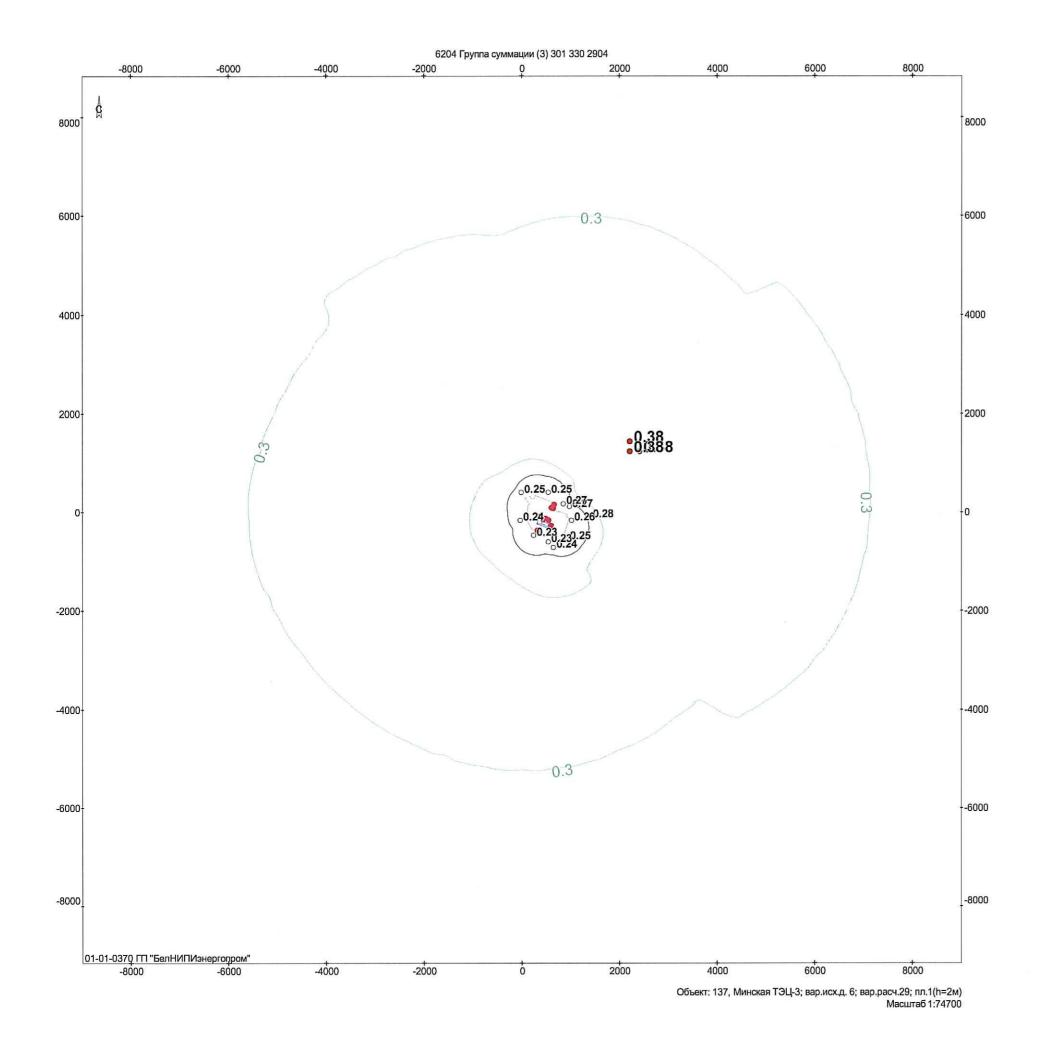
Поле максимальных концентраций


Коорд Х(м)	Коорд Ү(м)	Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
-1200	-1762		0.27	47	4,90	0.028	0.138
	Площадка	цех Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	5		0.13	49,30	
	0	2	4		0.10	38,79	
	0	2	3		4.2e-3	1,58	
-1200	-1962		0.27	44	4,90	0.028	0.138
	Площадка	цех Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	5		0.13	50,46	
	0	2	4		0.10	37,69	
	0	2	3		4.1e-3	1,52	
-1400	-1962		0.27	47	5,00	0.028	0.138
	Площадка	ц Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	5	•	0.14	51,39	
	0	2	4		0.10	36,75	
	0	2	3		4.1e-3	1,52	


Вещество: 6204 Группа суммации (3) 301 330 2904


Площадка: 1


Поле максимальных концентраций


Коорд Х(м)	Коорд Ү(м)	Концен [.] ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
2400	1238		0.38	233	5,00	0.073	0.211
	Площадка	. Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	5	j	0.14	36,91	
	0	2	4	ļ	0.09	22,49	
	_ 0	2	3	}	0.04	11,51	
2200	1438		0.38	226	5,00	0.073	0.211
	Площадка	цех Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	5	5	0.14	36,74	
	0	2	4	•	0.09	22,67	
	0	2	3	3	0.04	11,36	
2200	1238		0.38	230	5,00	0.074	0.211
	Площадка	а Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	5	5	0.14	35,67	
	0	2	4	ļ	0.09	23,28	
	0	2	3	3	0.04	11,73	

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

5

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 9, ВАРИАНТ 3

Вариант расчета: Приземный слой

Расчет проведен на зиму

Расчетный модуль: "ОНД-86 стандартный" Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость	5 m/c
превышения в пределах 5%)	

Параметры источников выбросов

Учет	№ пл.	Nº	№ ист	г. Наименование источника	Вар.	Ťип	Высота	Диаме	тр Объем	Скорость	Темп.	Коэф.	Ke	орд.	Коорд.	Коорд.	Коорд.	Ширина
при		цеха					ист. (м)			FBC (M/c)	TBC (°C)	рел.			Y1-ос. (м)		коорд. Ү2-ос. (м)	источ.
расч.							`	•	(куб.м/с)	(/	(-,			,		712 00. (III)	1 2 -00. (m)	(M)
	0	1		4 Дымовая труба	1	1	100,0	6	,00 186	6,5784	166	1,0	5	303,0	-374,0	303,0	-374,0	
		Код		Наименование вещества		- I	Выброс, (r/c)	Выброс, (т/г)	F Лет			ím		има: Cm/П/		Um	
		01:		Кадмий и его соединения			0.000145		0,0000000	1	0,00		56,7	4,4	0,000			
		014	40	Медь и его соединения (в пересч	іет е на		0.001000	00	0,0000000	1	0,00	0 16	56,7	4.4	0.000			
				медь)									-	•				
		010		Никель оксид			0.129199		0,0000000	1	0,00	8 16	56,7	4,4	0,007	7 1 695,8	4,7	
		011		Ртуть (Ртуть металлическая	۹)		0.000155		0,0000000	1	0,00	0 16	56,7	4,4	0,000	1 695,8		
		018		Свинец и его соединения	_		0.003646		0,0000000	1	0,00			4,4	0,002		4,7	
		022	28	Хрома трехвалентные соединени	я (в пе-	•	0.001000	10	0,0000000	1	0,00	0 16	56,7	4,4	0,000		4,7	
				ресчете на хром)														
		022	29	Цинк и его соединения (в пересч	ете на		0.000000	10	0,0000000	1	0,00	0 16	56,7	4,4	0,000	1 695,8	4,7	
		001		цинк)														
		030		Азота диоксид (Азот (IV) окси			41.660000		0,0000000	1	0,09			4,4	0,094			
		032 032		Мышьяк и его соединения			0.000000		0,0000000	1_	0,00	0 16	56,7	4,4	0,000			
				Углерод (Сажа)	×\		0.673000		0,0000000	1,5	0,00		49,6	4,4	0,004			
		033 033		Сера диоксид (Ангидрид сернис	тыи)		142.25000		0,0000000	1	0,16			4,4	0,161			
		070		Углерод оксид Бенз/а/пирен (3,4-Бензпирег			11.070000 0.000209		0,0000000	1	0,00			4,4	0,001			
		290		Мазутная зола теплоэлектроста			0.393000		0,0000000	1	0,02			4,4	0,024			
	0			Дымовая труба	<u>інции</u> 1	1			0,0000000	1,5	0,01			4,4	0,017			
	U	Код в			1		180,0			10,23317	188,8	1,0		533,0	-162,0	533,0	-162,0	0,00
		од в 012		Наименование вещества			Выброс, (г		Выброс, (т/г)	F Лет					ма: Ст/ПД		Um	
		014		Кадмий и его соединения			0.001064		0,0000000	1	0,000		94,2	6	0,000			
		01-	10	Медь и его соединения (в пересч медь)	ете на		0.008000	U	0,0000000	1	0,000	3 49	34,2	6	0,000	3 565,8	6,3	
		016	34	Никель оксид			0.950446	0	0,0000000	1	0.010	3 49	14.2	6	0.010	3 565.8	6,3	
		018	3	Ртуть (Ртуть металлическая)		0.001083		0.0000000	i	0.000			6	0,000			
		018	34	Свинец и его соединения	•		0.026821		0.0000000	ì	0,003			6	0,003		6,3	
		022	28	Хрома трехвалентные соединения	я (в пе-		0.010200		0.0000000	1	0,000			6	0,000		6,3	
				ресчете на хром)	•				-,	•	0,00		.,_	•	0,000	0 000,0	0,0	
		022	9	Цинк и его соединения (в пересч	эте на		0.034000	0	0,0000000	1	. 0,000	3 49	94,2	6.	0,000	3 565,8	6,3	
				цинк)		_									·			
		030		Азота диоксид (Азот (IV) окси	Д)		06.58000		0,0000000	1	0,091			6	0,087		6,3	
		032		Мышьяк и его соединения			0.000000		0,0000000	.1_	0,000			6	0,000			
		032 033		Углерод (Сажа)			4.954000		0,0000000	1,5	0,008			6	0,005		6,3	
		033		Сера диоксид (Ангидрид сернис	тыи)		044.35700		0,0000000	1	0,229			6	0,220			
		070		Углерод оксид			53.370000		0,0000000	1	0,001			6	0,001	3 565,8		
		290		Бенз/а/пирен (3,4-Бензпирен			0.001372		0,0000000	1	0,030			6	0,029		6,3	
%	0	1		Мазутная зола теплоэлектроста	<u>пции</u>	- 41	2.887000		0,0000000	1,5	0,024		<u> </u>	6	0,023		6,3	
/0	쒸	- 4	30	Вытяжка ЦЦР (сварочный	Ţ	1	6,5	0,	50 0,303	1,54317	20	1,0		472,0	-130,0	472,0	-130,0	0,00
		1/0= -		пост)				4-5	ا بــــــــــــــــــــــــــــــــــــ				L					
		Код в 030		Наименование вещества	-1		ыброс, (г.		Выброс, (т/г)	F Лет					ма: Ст/ПД		Um	
		030		Азота диоксид (Азот (IV) окси	A)		0.0032000		0,0000000	1	0,023			0,5	0,041		0,7	
		033	,	Углерод оксид			0.0036920	,	0,0000000	1	0,001	37	,1	0,5	0,002	28,7	0,7	

Not seas Astronomous Badispoc, (r/s) F Parto: Cmr/TµK Xm Um Sawa: Cmr/TµK Xm Um O.032200 O.0000000 O.0000000 O.00000000 O.00000000 O.00000000 O.00000000 O.00000000 O.00000000 O.00000000 O.00000000 O.000000000 O.00000000 O.000000000 O.000000000 O.000000000 O.000000000 O.0000000000		0/			070 744										
0.301 Авота дикожид (Авот (ПУ) ок.нд) 0.0036220 0.00000000 1 0.142 17,1 0,5 0.50 0.099 17,1 0,8	0.331 Аэота диожиц (Аэот (V) оксид) 0.033200 0.0000000 1 0.042 17; 1 0.5 0.160 17; 1 0.8			1	пост)	1 3,0	0,40 0,206	1,6393	20	1,0	350,0	-91,0	350,0	-91,0	0,00
1931 Авота Анкомежд (Авот (V) оксид) 0,0032200 0,00000000 1 0,142 17,1 0,5 0,660 17,1 0,8 0	1931 Анота дискиц (Азот (V) окада) 0.0035200 0.00000000 1 0.008 17;1 0.5 0.600 17;1 0.8				Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПД	(Xm	Um Зима:	Ст/ПДК	Xm	Um	
0 1 123/Дымовая труба 1 16 00, 70, 650, 6 16,9055 103 11, 0,50 0,009 17, 0,8	1 123 123				Азота диоксид (Азот (IV) оксид)		0,0000000	1							
No. 1 123 _bumosar труба 1 60,0 7,00 650,6 16,0055 103 1,0 580,0 -276,0 5			. —			0.0036920	0,0000000	1	800,0		•	•			
Выброс, (г/с) Выброс, (г/с) Выброс, (г/с) Выброс, (г/с) Положения	Код рыв Наименование вещества Выброс, (г/с) Биброс, (г/с) F Детс. Сти/ПДК Хт. Um 3/маг. Um 3/маг. Сти/ПДК Хт. Um 3/маг. Um	<u> </u>	0	1	123Дымовая труба 1	1 60,0	7.00 650.6	16,9055	103	1.0					0.00
0183	1985 Prys. (Prys. металическая) 0.0000202 0.00000000 1 0.000 1603,4 8.1 0.000 1631,6 8.7				Наименование вещества	Выброс, (г/с)									0,00
1991 Азота дискии, (Азот (V) оксиа) 44.7060000 0,0000000 1 0,020 1633,4 8,1 0,130 1531,5 8,7	1991 Аэгга диоскид (Аээт (V) оксид) 44,7050000 0,00000000 1 0,135 1603,4 8,1 0,130 1631,6 8,7				Ртуть (Ртуть металлическая)			1							
1937 Утперод оксид 134.1150000 0,00000000 1 0,000 1603,4 8.1 0,001 1631,6 8.7	134,1150000 14,00000000 1,000000000 1,000000000 1,000000000 1,0000000000					44.7050000	0,0000000	1							
H 0.0110 Бенз/а/иментан Бензиние (З.4-Бензирен) 67.658000 (0.000001) 0.0000000 (0.0000001) 1 (0.00) 1603,4 (8.1) (0.00) 1631,6 (8.7) + 0.2 3] Дјымовая труба 1 (10,00) 7,000 333,6 (18,73338) 152 (10) 425,0 (-152,0) 425,0 (-152,0) 152,0 (0.00000) 6 (2) 4 20124 (10,000000) 1 (10,00) 1 (10,00) 7,000 333,6 (18,73338) 152 (10) 425,0 (-152,0)	Mertan Mertan G7.0580000 0,00000000 1 6003,4 8,1 0,000 1631,6 8,7					134.1150000	0,0000000	1	0.020	1 603.4	8.1				
+ 0 / 2 3/Дымовая трубса 1 1 / 100,0 / 7,00 336,1 8,73338 152 1,0 425,0 -152,0 -152,0 -152,0 -152,0 -152,0 -152,0 -152,0 -152,0 -152,0 -152,0 -152,0	1						0,0000000	1	0,001	1 603,4	8.1				
Note Hammenopame вещества 10004740 10004740 10004740 10004740 10004740 10000000 1	Код в-ва	-				0.0000019	0,0000000	1_	0,000			0,000			
Наименование вещества Выброс, (г/с) Выб	Код. в-ва	<u> </u>	0			1 100,0	7,00 336,1	8,73338	152	1.0	425.0	-152.0	425.0	-152.0	0,00
От 124 Кадмий и его соединения 0,0004740 0,0000000 1 0,000 1 875 5,3 0,000 1 919,1 5,6	10124 Мадмий и его соединения (пересчете на медь) 11 11 11 12 12 13 14 15 15 15 15 15 15 15						Выброс, (т/г)	F Лето:	Ст/ПДК			Ст/ПДК			-,,,,,
Медь и его соединения (в пересчете на медь) О.0034150 О.0000000 О.0000000 О.000 1875 5,3 О.001 1919,1 5,6	Веропростий Меды и Регосовдинения (в пересчете и меды) О.0034165 О.0000000 1 О.001 1875 5.3 О.001 1919,1 5.6				Кадмий и его соединения			1	0,000	1 875	5,3				
0164 Никель оксид 0.4237080 0.0000000 1 0.000 1875 5.3 0.019 1919,1 5.6 184	1			0140		0.0034160	0,0000000	1	0,001	1 875					
0183	1983 Рутуть (Руть металияческая) 0.0004850 0.0000000 1 0.000 1875 5.3 0.000 1919,1 5.6	_		0404							•	•	•	•	
0184 Свинец и его соединения (в пересчете на хром) 1028 Хрома трехвалентные соединения (в пересчете на хром) 1029 Цинк и его соединения (в пересчете на хром) 1029 Цинк и его соединения (в пересчете на хром) 10301 Азота диоксид (Азот (IV) оксид) 103025 Мышьяк и его соединения (в пересчете на хром) 103026 Углерод (Сажа) 103026 Углерод (Сажа) 103027 Мышьяк и его соединения (в пересчете на хром) 103028 Углерод оксид 103030 Сера диоксид (Ангидрид сернистый) 103037 Углерод оксид 103037 Углерод оксид 103037 Мазота теппоэпектростанций 103040 Мазутная зола теппоэпектростанций 103050 Оромо 1 0,000 1875 5,3 0,008 1919,1 5,6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0184 Свинец и его соедимения 0.0119570 0,0000000 1 0,000 1875 5,3 0,000 1919,1 5,6 1 1 1 5,6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•						1			5,3	0,019	1 919,1	5,6	
0228 Хрома трехвалентные соединения (в пересчете на хром) 0.004550 0.0000000 1 0.000 1875 5.3 0.000 1919,1 5.6	0.228 Хрома трехвалентные соединения (в пересчете на хром) 0.0000000 1 0.000 1875 5,3 0.000 1919,1 5,6						•	•	•	_		0,000		5,6	
ресчете на хром) О229 Цинк и его соединения (в пересчете на динк) О301 Азота диоксид (Азот (IV) оксид) О3025 Мышьях и его соединения О301 Азота диоксид (Азот (IV) оксид) О3026 Углерод (Сажа) О3030 Сера диоксид (Ангидрид сернистый) О3030 Сера диокрам (З.4-Бенапирен) О2000000 1 О3030 Сера диоксид (Ангидрид сернистый) О3030 Сера диокрам (З.4-Бенапирен) О2000000 1 О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (Азот (IV) оксид) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3030 Сера диокрам (З.4-Бенапирен) О3031 Азота диокомам (З.4-Бенапирен) О3032 Сера диокомам (З.4-Бенапирен) О3033 Сера диокомам (З.4-Бенапирен) О3034 Оденам от матемам от матемам	1							•					1 919,1	•	
1	При			0220		0.0045550	0,0000000	1	0,000	1 875	5,3	0,000	1 919,1	5,6	
Мазутная зола теплоэлектростанций 1,0790,000 1,0000,000 1,00				0229		0.0452720	0.000000	4							
0301 Азота диоксид (Азот (IV) оксид) 49,6000000 0,00000000 1 0,002 1875 5,3 0,008 1919,1 5,6	1			ULLS	· · · · · · · · · · · · · · · · · · ·	0.0153730	0,0000000	1	0,000	1 875	5,3	0,000	1 919,1	5,6	
0.0001900	0.325 Мышьяк и его соединения 0.0001900 0.0000000 1 0.000 1875 5,3 0.000 191,1 5,6 1,7660000 0.0000000 1,5 0.008 1640,6 5,3 0.008 1679,2 5,6 1,7660000 0.0000000 1,5 0.008 1,7650000 0.0000000 1,5 0.008 1,7650000 0.0000000 1,5 0.008 1,7650000 0.00000000 1,5 0.008 1,7650000 0.0000000 1,5 0.008 1,7650000000 1,5 0.008 1,7650000 0.0000000 1,5 0.008 1,76500000 0.0000000 1,5 0.008 1,76500000 1,5 0.008 1,76500000 1,5 0.008 1,765000000000000000000000000000000000000			0301		49 6000000	0.0000000	4	0.000	4.075		0.000	4.040.4		
0328 Утперод (Сажа) 1.766000 0,0000000 1,5 0,008 1640,6 5,3 0,008 1679,2 5,6 0330 Сера диоксид (Ангидрид сернистый) 38,184000 0,0000000 1 0,207 1875 5,3 0,198 1919,1 5,6 0703 Бенз/а/пирен (З.4-Бензпирен) 0,000540 0,0000000 1 0,004 1875 5,3 0,003 1919,1 5,6 1	0328 Углерод (Сажа) 1.766000 0,0000000 1,5 0,008 1670,5 5,3 0,008 1679,2 5,6								,			•	•		
0330 Сера диоксид (Ангидрид сернистый) 223.9110000 0,0000000 1 0,207 1875 5,3 0,198 1919,1 5,6 0703 Бенз/а/пирен (3,4-Бензпирен) 0,0005440 0,00000000 1 0,050 1875 5,3 0,003 1919,1 5,6 0,0000000 1 0,050 1875 5,3 0,003 1919,1 5,6 0,0000000 1 0,050 1875 5,3 0,0048 1919,1 5,6 0,0000000 1 0,050 1875 5,3 0,0048 1919,1 5,6 0,0000000 1 0,000000 1 0,050 1875 5,3 0,048 1919,1 5,6 0,0000000 1 0,050 1875 5,3 0,048 1919,1 5,6 0,0000000 1 0,050 1875 5,3 0,048 1919,1 5,6 0,0000000 1 0,000000 1 0,000000 1 0,000	0330 Сера диоксид (Ангидрид сернистый) 223 911000 0,0000000 1 0,207 1875 5,3 0,198 1919,1 5,6 5,6											•	•	•	
10337 Углерод оксид 38.184000 0,0000000 1 0,004 1875 5,3 0,003 1919,1 5,6 0,0000000 1 0,0000000 1 0,000 1875 5,3 0,003 1919,1 5,6 0,0000000 1 0,0000000 1 0,000 1875 5,3 0,048 1919,1 5,6 0,0000000 1 0,00000000 1 0,00000000 1 0,00000000 1 0,000000000 1 0,00000000 1 0,000000000 1 0,0000000000	10337 Углерод скожд 38.184000 0,0000000 1 0,004 1875 5,3 0,003 1919,1 5,6 5,6 5,0 5,6 5,0 5,6 5,6 5,0 5,6 5,6 5,5 5,0 5,6 5,6 5,5			0330					•		5,3 5.3	•		,	
0703 Бенз/а/пирен (3,4-Бензпирен) 2902 Твердые частицы 3,3060000 0,0000000 1 0,005 1 875 5,3 0,048 1 919,1 5,6 3,006 1 875 5,3 0,048 1 919,1 5,6 3,006 1 875 5,3 0,048 1 919,1 5,6 18,5 1 8,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1	9703 Бенз/а/пирен (3,4-Бензпирен)			0337			,				5,3 5.3				
2902 Твердые частицы 3.3060000 0,00000000 3 0,015 937,5 5,3 0,015 959,5 5,6 + 0 2 4/Дымовая труба 1 1 100,01 6,00 84,28 2,9808 225 1,01 303,0 -374,0 0 Код в-ва 0183 Ртуть (Ртуть металлическая) 0,0000050 0,0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0330 Сера диоксид (Ангидрид сернистый) 0,2880000 0,0000000 1 0,005 1 438,4 3,7 0,000 1 466,9 3,8 9703 Бенз/а/пирен (3,4-Бензпирен) 0,0001450 0,0000000 1 0,005 1 438,4 3,7 0,000 1 466,9 3,8 4 0 2 5/Дымовая труба 1 1 1,000 1,438,4 3,7 0,000 1 466,9 3,8 4 0 2 5/Дымовая труба 1 1 1,000 1,000 1,438,4	2902 Твердые частицы 3.3060000 0,0000000 1,010 937,5 5,3 0,015 999,5 5,6 + 0 2 4Дымовая труба 1 1 100,01 6,00 84,28 2,9808 225 1,0 303,01 -374,0 9,00 Код в-ва 03031 Наименование вещества Руть (Ртуть металлическая) Выброс, (г/с) 0,0000000 1,000000000 1 0,000 1,438,4 3,7 0,000 1,466,9 3,8 0330 Сера диоксид (Ангидрид сернистый) 0,288000 0,0000000 1 0,000 1,438,4 3,7 0,000 1,466,9 3,8 1 1 180,0 0,000 0,0000000 1 0,005 1,438,4 3,7 0,000 1,466,9 3,8 1 1 1 1 1 1 1 1 0,0000000 1 0,000 1,438,4 3,7 0,000 1,466,9 3,8 4 0 2 5 3 0,000 1,4			0703							5,5 5.3	•		•	
2904 Мазутная зола теплоэлектростанций 1.0790000 0,0000000 1,5 0,037 1 640,6 5,3 0,036 1679,2 5,6 + 0 2 4/Дымовая труба 1 1 100,0 6,00 84,28 2,9808 225 1,0 303,0 -374,0 303,0 -374,0 0 Код в-ва оз30 Ртуть (Ртуть металлическая) 0.0000005 0.0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0331 Азота диоксид (Антидрид сернистый) 0.2880000 0,0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0337 Углерод оксид 2.6360000 0,0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 1 1 1 1 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 2 5/дымовая труба 1 1 180,0 9,60 446,02 6,162	2904 Мазутная зола теппоэлектростанций 1.0790000 0.0000000 1,5 0.037 1 640,6 5,3 0,035 1 679,2 5,6 Код в-ва 0183 Наименование вещества 0183 Наименование вещества 0183 Выброс, (г/с) 0.0000000 Выброс, (г/с) 0.00000000 F Лего: СтиПДК Сти 0.000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 466,9 3,8 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0,000 1 438,4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td></td></t<>							•				•		•	
+ 0 2 4/Дымовая труба 1 1 100,0 6,00 84,28 2,9808 225 1,0 303,0 -374,0 303,0 -374,0 0 Код в-ва 0183 Наименование вещества 0183 Выброс, (г/с) 0183 Выброс, (г/с) 0.0000000 Выброс, (г/с) 0.0000000 Выброс, (г/с) 0.0000000 1 438,4 3,7 0.000 1 466,9 3,8 0301 Азота диоксид (Ангидрид сернистый) 0703 Сера диоксид (Ангидрид сернистый) 0.00001450 0.0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0.00001450 0.0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 1 466,9 3,8 0.0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 1 0,0000	+ Q 2 4Дымовая труба 1 1 100,0 6,00 84,28 2,9808 225 1,0 303,0 -374,0 0,00 Код в-ва О183 Наименование вещества О183 Ртуть (Ртуть металлическая) Выброс, (г/с) 0.0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 3,8 0 1 466,9 3,8 0 1 466,9 3,8 0 0 0 0,0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0 0 0 0,0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0 0 0 0,0000000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0 0 0 0 0 0 0 0 1 438,4 3,7 0,000 1 466,9 3,8 0				Мазутная зола теплоэлектростанций	1.0790000			•		5.3				
Код в-ва 0183 Наименование вещества Ртуть (Ртуть металлическая) Выброс, (т/с) 0.0000050 Выброс, (т/г) 0.0000050 F Лего: Ст/ПДК Xm 0.0000000 Xm Um 3има: Ст/ПДК Xm 0.0000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 Xm Um 3има: Ст/ПДК Xm 0.0000000 Vm 466,9 3,8 0.0000000 0330 Сера диоксид (Ангидрид сернистый) 0.0000000 0.2880000 0.0000000 0.0000000 0.0000000 1 0,000 1 438,4 3,7 0,000 1 438,4 3,7 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 0.0000000 1 0,0000000 1 0,000 1 438,4 3,7 0,000 1 0,000 1 438,4 3,7 0,000 1 466,9 3,8 0.0000000 0.0000000 1 0,0000000 1 0,000 1 438,4 3,7 0,000 1 0,00	Код в-ва 0183 Наименование вещества Потуть (Ртуть металлическая) Выброс, (г/с) 0.0000050 Выброс, (г/г) 0.0000050 Быброс, (т/г) 0.0000000 Третона инференциал и потуть и потут	+	0	2		1 100.0									0.00
0183	0183			Код в-ва	Наименование вещества										0,00
0301 Азота диоксид (Азот (IV) оксид) 14.3790000 0,0000000 1 0,045 1438,4 3,7 0,044 1466,9 3,8 0330 Сера диоксид (Ангидрид сернистый) 0.2880000 0,0000000 1 0,000 1438,4 3,7 0,000 1466,9 3,8 0337 Углерод оксид 2.6360000 0,0000000 1 0,000 1438,4 3,7 0,000 1466,9 3,8 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0001450 0,0000000 1 0,023 1438,4 3,7 0,000 1466,9 3,8 0703 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14.3790000 1.00000000 1.00000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 1.00000000 1.0000000 1.0000000 1.0000000 1.00000000 1.00000000 1.00000000 1.0000000000				Ртуть (Ртуть металлическая)										
1 1 1 1 1 1 1 1 1 1	0330 Сера диоксид (Ангидрид сернистый) 0.2880000 0.00000000 1 0.000 1 438,4 3,7 0.000 1 466,9 3,8 3,8 3,7 0.000 1 466,9 3,8 3,8 3,7 0.000 1 466,9 3,8 3,8 3,7 0.000 1 466,9 3,8 3,8 3,7 0.000 1 466,9 3,8 3,8 3,7 0.000 1 466,9 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7 3,0 3,8 3,7				Азота диоксид (Азот (IV) оксид)	14.3790000	0.0000000	1							
0337 0703 Углерод оксид Бенз/а/пирен (3,4-Бензпирен) 2.6360000 0.0001450 0,00000000 0.0000000 1 0,000 0.023 1 438,4 1438,4 3,7 3,7 0,002 0,000 1 466,9 1 466,9 3,8 3,8 + 0 2 5Дымовая труба 1 1 180,0 183 9,60 PTYTь (РТУТЬ металлическая) 446,02 0.0000310 6,162 0.0000000 1 66,0 1,0 1 0,000 33,0 3023,7 3023,	1				Сера диоксид (Ангидрид сернистый)	0.2880000	0,0000000	1	0.000						
6/03 Бенз/а/пирен (3,4-Бензпирен) 0.0001450 0,0000000 1 0,023 1 438,4 3,7 0,022 1 466,9 3,8 + 0 2 5Дымовая труба 1 1 180,0 9,60 446,02 6,162 166 1,0 533,0 -162,0 533,0 -162,0 0 Код в-ва 0183 Наименование вещества 0183 Выброс, (г/с)	+ 0 2 5 Дымовая труба 1 1 80,0 9,60 446,02 6,162 166 1,0 533,0 -162,0 533,0 -162,0 0,00 Код в-ва 0183 Наименование вещества 0183 Ртуть (Ртуть металлическая) 0.000310 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0301 Азота диоксид (Азот (IV) оксид) 0330 82.2000000 0,00000000 1 0,000 3 023,7 4,7 0,046 3 100,9 5 0337 Углерод оксид Онгидрид сернистый) 0703 1.6450000 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0,0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 + 0 2 123 Дымовая труба 1 1 60,0 7,00 836,46 21,73498 110 1,0 580,0 -276,0 580,0 -276,0 0,00 Ко						0,0000000	1	0.000	1 438,4		0.000	1 466.9	3.8	
Код в-ва Наименование вещества Выброс, (т/с) Выброс, (т/г) F Лето: Сти/ПДК Хти Um Зима: Сти/ПДК Хти Um О.000 3 023,7 4,7 0,000 3 100,9 5 0330 Сера диоксид (Аэти (Гу) оксид) 82.2000000 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0337 Углерод оксид О.00000000 1 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0337 Углерод оксид О.00000000 1 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0,0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0.0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0.0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0.0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0.0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0.0000000 1 0,000 0.000000 1 0,000 0.00000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.00000000 1 0,000 0.000000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000 1 0,000 0.0000000000	Код в-ва Наименование вещества Выброс, (т/с) Выброс, (т/г) F Лето: Сти/ПДК Хти Um Зима: Сти/				Бенз/а/пирен (3,4-Бензпирен)							0,022			
Код в-ва Наименование вещества 0.0000310 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0301 Азота диоксид (Азот (IV) оксид) 82.2000000 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0330 Сера диоксид (Ангидрид сернистый) 1.6450000 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0337 Углерод оксид 15.0700000 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0.0000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.00000000	Код в-ва Наименование вещества 0.0000310 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0330 Сера диоксид (Ангидрид сернистый) 1.6450000 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0337 Углерод оксид 15.0700000 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0337 Углерод оксид 15.0700000 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0.00000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.00000000 1 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.00000000 1 0.00000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0.0000000000000000000000000000000000	+	0				9,60 446,02	6,162	166	1,0	533,0	-162,0			0,00
0183 Ртуть (Ртуть металлическая) 0.0000310 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0301 Азота диоксид (Азот (IV) оксид) 82.2000000 0,00000000 1 0,048 3 023,7 4,7 0,046 3 100,9 5 0330 Сера диоксид (Ангидрид сернистый) 1.6450000 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0337 Углерод оксид 15.0700000 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0,0000000 1 0,010 3 023,7 4,7 0,000 3 100,9 5 0 0,000 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0 0,000 0 0,000 0 0 0 0,000 0 0 0 0,000 0 0 0 0,0	0183 Ртуть (Ртуть металлическая) 0.0000310 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0301 Азота диоксид (Азот (IV) оксид) 82.2000000 0.0000000 1 0.048 3 023,7 4,7 0.046 3 100,9 5 0337 Углерод оксид (Ангидрид сернистый) 1.6450000 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0337 Углерод оксид 15.0700000 0.0000000 1 0.000 3 023,7 4,7 0.000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0.0000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.00000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.00000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.00000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000000 1 0.001 3 023,7 4,7 0.000 3 100,9 5 0.0000000000000000000000000000000000								Ст/ПДК						= 1 = =
1 1 1 1 1 1 1 1 1 1	10301 Азота диоксид (Азот (IV) оксид) 82.2000000 0,00000000 1 0,048 3 023,7 4,7 0,046 3 100,9 5								0,000			0,000			
0337 Углерод оксид 15.0700000 0,00000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0,0000000 1 0,010 3 023,7 4,7 0,009 3 100,9 5 + 0 2 123 Дымовая труба 1 1 60,0 7,00 836,46 21,73498 110 1,0 580,0 -276,0 580,0 -276,0 0	0337 Углерод оксид 15.0700000 0,0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0,0000000 1 0,000 3 023,7 4,7 0,000 3 100,9 5 + 0 2 123 Дымовая труба 1 1 60,0 7,00 836,46 21,73498 110 1,0 580,0 -276,0 580,0 -276,0 580,0 -276,0 0,00 Код в-ва Наименование вещества 0183 Выброс, (г/с) Выброс, (г/с) Выброс, (г/г) Г. Лето: Сти/ПДК Xm Um Зима: Сти/ПДК Xm Um 0183 Ртуть (Ртуть метаплическая) 0.0000230 0,0000000 1 0,000 1 784,2 9,6 0,000 1 807,5 10,2							-			4,7	0,046	3 100,9		
0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0,0000000 1 0,010 3 023,7 4,7 0,000 3 100,9 5 + 0 2 123 Дымовая труба 1 1 60,0 7,00 836,46 21,73498 110 1,0 580,0 -276,0 580,0 -276,0 0	0703 Бенз/а/пирен (3,4-Бензпирен) 0.0003250 0,0000000 1 0,010 3 023,7 4,7 0,009 3 100,9 5 + 0 2 123 Дымовая труба 1 1 60,0 7,00 836,46 21,73498 110 1,0 580,0 -276,0 580,0 -276,0 0,00 Код в-ва Наименование вещества 0183 Выброс, (г/с) Выброс, (т/г) F Лето: Ст/ПДК Xm Um Зима: Ст/ПДК Xm Um 0183 Ртуть (Ртуть металлическая) 0.0000230 0,00000000 1 0,000 1 784,2 9,6 0,000 1 807,5 10,2							•			•				
+ 0 2 123 Дымовая труба 1 1 60,0 7,00 836,46 21,73498 110 1.0 580.0 -276.0 580.0 -276.0 0	+ 0 2 123 Дымовая труба 1 1 60,0 7,00 836,46 21,73498 110 1,0 580,0 -276,0 580,0 -276,0 0,00 0,00 0 0 0 0,000 0 0 1 0,000 1 784,2 9,6 0,000 1 807,5 10,2							1				•			
	Код в-ва Наименование вещества Выброс, (г/с) Выброс, (т/г) F Лето: Сти/ТДК Xm Um Зима: Сти/ТДК Xm Um 0183 Ртуть (Ртуть металлическая) 0.0000230 0,0000000 1 0,000 1,784,2 9,6 0,000 1,807,5 10,2	4	0					1						_	
V	0183 Ртуть (Ртуть металлическая) 0.0000230 0,0000000 1 0,000 1784,2 9,6 0,000 1 807,5 10.2	_ +	U									276,0	580,0	-276,0	0,00
Suppos, (iii) Buopos, (iii) I Melo. Chini Ak Alli Chi Suma. Chini Ak Alli Chi	0,0000000 1 0,000 1,004,2 9,0 0,000 1,004,2 9,0														
0301								-			• •				
0301 Азота диоксид (Азот (IV) оксид) 52,3490000 0,0000000 1 0,128 1,784.2 9,6 0,124 1,807.5 10.2	0337							-		•		•	•	•	
0327					Углерод оксид			•	•		•	0,019		•	
0337 Углерод оксид 157,0470000 0,0000000 1 0,019 1 784,2 9,6 0,019 1 807,5 10,2	0,019 1 704,2 9,0 0,019 1 607,5 10,2			0103	оспагалирен (а,4-рензцирен)	0.0000020	0,0000000	7	0,000	1 784,2	9,6	0,000	1 807,5	10,2	
0327	VOOL YEROOM OKCHA 157 NA70000 0 0000000 1 0.010 4.7040 0.0 0.040 4.007 5.40				Бенз/а/пирен (3.4-Бензпирен)			•	•		•			•	
0337 Углерод оксид 157,0470000 0,0000000 1 0,019 1 784,2 9,6 0,019 1 807,5 10,2	0,019 1 704,2 9,0 0,019 1 607,5 10,2				1 (1		0,000000	•	0,000	1 104,2	3,0	0,000	1 607,0	10,2	

		ام	<u> </u>	404D	41	4	0.00 1.00-		اء ہے	- , _1					
<u> </u>		0	2	124 Вытяжка гаража-стоянки	1	1 7,8	0,50 1,532	7,80241	20	1,0	629,0	79,0	629,0	79,0	0,00
			Код в-ва		_x	Выброс, (г/с)	Выброс, (т/г)	F Лето:		Xm	Um Зима:	Cm/ПДК	Χm	Um	
			0301	Азота диоксид (Азот (IV) окси		0.0004500	0,0000000	1	0,001	57.8	0,7	0,001	75,6	1,1	
			0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1_	0,000	57,8	0,7	0,000	75,6	1,1	
			0328	Углерод (Сажа)		0.0000210	0,0000000	1,5	0,000	50,6	0,7	0,000	66,1	1,1	
			0330	Сера диоксид (Ангидрид сернис	тый)	0.0000830	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
			0337	Углерод оксид		0.0132820	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
			2754	Углеводороды предельные алифа	ическо-	0.0019660	0,0000000	1	0,002	57.8	0,7	0,001	75,6	1,1	
				<u>го ряда С11-С19</u>											
+	_,	0	2	125 Вытяжка гаража-стоянки	<u> 1 </u>	1 7,8	0,50 1,532	7,80241	20	1,0	625,0	82,0	625,0	82,0	0,00
			Код в-ва			Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Χm	Um Зима:	Cm/ПДК	Χm	Um	
			0301	Азота диоксид (Азот (IV) окси	д)	0.0004500	0,0000000	1	0,001	57,8	0,7	0,001	75,6	1,1	
			0304	Азот (II) оксид (Азота оксид)	l	0.0000730	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
			0328	Углерод (Сажа)		0.0000210	0,0000000	1,5	0,000	50,6	0,7	0,000	66,1	1,1	
			0330	Сера диоксид (Ангидрид сернис	тый)	0.0000830	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
			0337	Углерод оксид		0.0132820	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
			2754	Углеводороды предельные алифат	ическо-	0.0019660	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
				го ряда С11-С19											
+		0	2	126Вытяжка гаража-стоянки	1	1 7.8	0,32 1,667	21,39068	20	1,0	617,0	88,0	617,0	88,0	0,00
			Код в-ва			Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
			0301	Азота диоксид (Азот (IV) окси		0.0004500	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
			0304	Азот (II) оксид (Азота оксид)		0.0000730	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
			0328	Углерод (Сажа)		0.0000210	0,0000000	1,5	0,000	87,4	1,1	0,000	87,9	1,1	
			0330	Сера диоксид (Ангидрид сернис	тый)	0.0000830	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
			0337	Углерод оксид		0.0132820	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
			2754	Углеводороды предельные алифат	ическо-	0.0019660	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
				го ряда С11-С19	_				•	•	·	ŕ	•	•	
+		0		127Вытяжка ТО	1	1 7,8	0,16 0,225	11,19058	20	1,0	604,0	83,0	604,0	83,0	0,00
			Код в-ва			Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
			0301	Азота диоксид (Азот (IV) окси,		0.0002080	0,0000000	1	0,001	44,5	0,5	0,001	37,7	0,6	
			0304	Азот (II) оксид (Азота оксид)		0.0000340	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
			0328	Углерод (Сажа)		0.0000130	0,0000000	1,5	0,000	38,9	0,5	0,000	32,9	0,6	
			0330	Сера диоксид (Ангидрид сернис	гый)	0.0000390	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
			0337	Углерод оксид		0.0076320	0,0000000	1	0,002	44,5	0,5	0.003	37,7	0,6	
			2754	Углеводороды предельные алифат	ическо-	0.0011070	0,0000000	1	0,001	44,5	0,5	0,002	37,7	0,6	
<u>-</u>	_			го ряда С11-С19							•	•		•	
+	Ц	0	2 ′	128 Вытяжка мастерской поста	1	1 6,0	0,20 0,125	3,97887	20	1,0	590,0	88,0	590,0	88,0	0,00
			Код в-ва	Наименование вещества		Выброс, (г/с)	Выброс, (т/г)	F Лето:		Χm	Um Зима:	Ст/ПДК	Xm	Um	
			2908	Пыль неорганическая, содержащая 70% SiO2	менее	0.0049500	0,0000000	2	0,073	25,7	0,5	0,156	16,7	0,5	
+	1	0	2	129 Вытяжка участка мойки	-11	1 8,0	0,50 1,389	7,07412	20	1,0	645,0	155,0	645,0	155,0	0,00
		Ĭ	~	автомобилей	'	' '', ''	0,00 1,008	1,01412	20	۱,۰۱	040,0	100,0	040,0	155,0	0,00
		i	Код в-ва			Buffnes (s/s)	D. (500 (-(-)	F Лето:	Om / 17 17 /	<u> </u>	11 0	0 (0.0)		11	
			0301	Азота диоксид (Азот (IV) оксид		Выброс, (г/с) 0,0000700	Выброс, (т/г) 0.0000000	F Лето: 1	Ст/ПДК	Xm 52.4	Um Зима:	Ст/ПДК	Xm	Um	
			0304	Азота диоксид (Азот (IV) оксид Азот (II) оксид (Азота оксид)	V			-	0,000	52,4	0,6	0,000	71,9	1,1	
			0304	Азот (п) оксид (Азота оксид) Углерод (Сажа)		0.00001,10	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	
			0330			0.0000040 0.0000130	0,0000000	1,5	0,000	45,9	0,6	0,000	62,9	1,1	
			0337	Сера диоксид (Ангидрид сернис	ыи)		0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	
			2754	Углерод оксид	4110000	0.0025530	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	
			4104	Углеводороды предельные алифата го ряда C11-C19	MHECKO-	0.0003710	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	

Выбросы источников по веществам

Вещество: 0124 Кадмий и его соединения

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0_	1	4	_ 1		0.0001450	1	0,0000	1656,70	4,3844	0,0000	1695,84	4.6520
0_	1	5	_ 1		0.0010640	1	0,000	3494,24	6,0080	0,0000	3565,84	6.3263
0	2	3_	1	+	0.0004740	1	0,0001	1875,00	5,2872	0,0001	1919,06	5,6298
Итог	0:				0.0004740		0,0001			0,0001	<u> </u>	

Вещество: 0140 Медь и его соединения (в пересчете на медь)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето		<u>- на подо</u>	Зима	
							Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0_	_1_	4	1		<u> </u>	1	0,0002	1656,70	4,3844	0,0002	1695,84	4,6520
0	1	_5	1	- ,	0.0080000	1	0,0003	3494,24	6,0080	0,0003	3565.84	
_0	2	3	1	+	0.0034160	1	0,0005	1875,00	5,2872	0,0005	1919,06	
Итог	<u>o:</u>				0.0034160		0,0005			0,0005		, , , , , , ,

Вещество: 0164 Никель оксид

№ пл.	N₂ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето		<u> </u>	Зима	-
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1		<u>0.1291997</u>	1	0,0077	1656,70	4,3844	0,0073		
_ 0_	_1_	5	1_	<u> </u>	0.9504460	1	0,0104	3494,24	6,0080	0,0100	3565,84	
0_	_ 2	_3	1	+	0.4237080	1	0,0196	1875,00	5,2872	0.0187	1919.06	
Итого	<u>o:</u>				0.4237080		0,0196			0,0187		

Вещество: 0183 Ртуть (Ртуть металлическая)

N₂	Nº	Nº	Тип	Учет	Выброс	F	1 19 15 11 1		ппическа	л)		
пл.	цех	ист.	1 111	7 461	(r/c)	Г		Лето			Зима	
<u> </u>							Cm/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0_	1	4	1		0.0001550		0,0002	1656,70	4,3844	0,0001	1695,84	
0	1	5	1_		0.0010830	1	0,0002	3494,24	6,0080	0,0002		
0	_1_	123	1		0.0000202	1	0,0000	1603,38				
0_	2	3	_ 1	_ +	0.0004850	1	0,0004	1875,00	5,2872			
0	2	4	1	+	0.0000050	1	0,0000	1438,37		0,0000		
_ 0_	2	5	1	+	0.0000310	1	0,0000	3023,71			3100,88	- 7 1
0	2	123	_1	_+	0.0000230	1	0,0000	1784,23	-,-		1807,49	
Итого	o:				0.0005440		0,0004		2,0.00	0,0004	<u>, 1007,40</u>	1 10,2041

Вещество: 0184 Свинец и его соединения

№ пл.	№ цех	№ ист.		Учет	Выброс (г/с)	F		Лето			Зима	
<u> </u>	<u> </u>						Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0_	1_	4_	1_		<u>0.0036460</u>	_ 1	0,0022	1656,70	4,3844	0.0021		
0	1	5	_1_		0.0268210	1	0,0029	3494.24			3565,84	
0_	2	3_	1_	+	0.0119570	1	0,0055	1875,00		0,0053	1919,06	
Итог	<u>):</u>				0.0119570		0,0055			0,0053	1010,00	0,0290

Вещество: 0228 Хрома трехвалентные соединения (в пересчете на хром)

№ пл.	Nº цех	№ ист.	Тил	Учет	Выброс (r/c)	F		Лето			Зима	
 _							Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (M/c)
0_	1_	4	1		0.0010000	1	0,0001	1656,70	4,3844	0,0001	1695,84	
0	1	_5_	_1_	-	0.0102000	1	0,0001	3494,24	6,0080		3565.84	
0	2	_3_	_ 1	+	0.0045550	1	0,0002	1875,00		0,0002	1919.06	
Итог	o:				0.0045550		0,0002			0,0002	,	0,0200

Вещество: 0229 Цинк и его соединения (в пересчете на цинк)

nn. Nº	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F	ОТО ОООДИ	Лето	<u>,</u>		Зима	
							Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	_4	1_		0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	1	5_	1	-	0.0340000	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	3	1	+	0.0153730	1	0,0000	1875,00	5,2872	0,0000	1919,06	5,6298
Итог	o: <u> </u>				0.0153730		0,0000			0,0000		·

Вещество: 0301 Азота диоксид (Азот (IV) оксил)

							ASOTA AND	HONE THE	71 (14) ONG	**/-4/		
Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
ηл. ,	цех	ист.			(r/c)							
						_	Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0_	1	4_	_1	-	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	
0	1_	_ 5	1		206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	
0	1	36	1	%	0.0032000	_ 1	0,0234	37,05	0,5000	0,0415	28,68	
0	1	<u> 37</u>	1	_%_	0.0032000	_1	0,1420	17,10	0,5000	0,1600	17,15	
0	1	<u>123</u>	1	-	44.7050000		0,1347	1603,38	8,1379	0,1297	1631,56	
0	2	3	1	+	49.6000000		0,0916	1875,00	5,2872	0,0875	1919,06	
0	2	_4_	1	+	14.3790000	1	0,0455	1438,37	3,6668	0,0438	1466,88	
0	2	5	1	+	82.2000000	_1	0,0483	3023,71	4,7438	0,0459	3100,88	
0	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	
0	2	124	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	
0	2	125	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	
0	2	126	1	+	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	
0	_2	127	1	+	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	
0	2	129	_1	+	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	
Итого							0,4838			0,5071		, , , , , ,

Вещество: 0325 Мышьяк и его соединения

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/c)
	1	4	1	-	0.000000e0	_ 1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0_	1_	_5	1		0.000000e0	1	0,0000	3494,24	6,0080	0.0000		
0	2	3	_1_	_ + _	0.0001900	1	0,0000	1875,00	5,2872	0,0000		
Итог	<u>o:</u>				0.0001900		0,0000			0,0000		

Вещество: 0328 Углерод (Сажа)

Nº	Nº	Nº	Тип	Учет	Выброс	F	7.	лерод (С Лето	umaj_			
пл.	цех	ист.			(r/c)	١.		11610			Зима	
	٦٠٨			i I	(176)		<u> </u>					
<u> </u>							Cm/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1_	4_	1_	<u> </u>	0.6730000			1449,61	4,3844	0,0038		
0	1	_5	1		4.9540000			3057,46	6,0080	0,0052		
0	2	3_	1	+	1.7660000			1640,63	5,2872			
0	2	<u> 124</u>	_1	+	0.0000210	1,5	0,0002	50,59	0,6502		66,14	
0	2	125	1	+	0.0000210	1,5	0,0002	50,59			66,14	
0_	2	126	1	_ +	0.0000210	1,5	0,0001	87,38			87,85	
0	2	127	1	+	0.0000130	1,5	0,0002	38,90			32,95	
0_	2	129	1	+	0.0000040	1,5		45,87				
Итого	o:				1.7660800		0,0088			0,0083	<u> </u>	1,0120

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

№ пл.	Nº ⊔ex	№ ист.	Тип	Учет	Выброс (г/с)	F	ри диокои	Лето	JAK GODIII	отын)	Зима	
<u> </u>	L						Cm/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	_1		142.2500000		0,1688	1656,70	4,3844	0,1612	1695,84	
0	1	_5	_1_		1044.3570000	1	0,2289	3494,24	6,0080	_		
_ 0	2_	3	1	+	223.9110000	1	0,2068	1875,00				
0_	2_	4	1	+	0.2880000	1	0,0005	1438,37			1466,88	
0	_ 2 _	_ 5	1	+	1.6450000	1	0,0005	3023,71			3100,88	
_0	_2_	124	1	+	0.0000830	1	0,0001	57,82	- 1		75,59	

Итог	того:				225.8443010		0,2082	•		0,1989		,
0	2	129	1	+	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1.0729
0	2	127	1	+	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
	2	126	_ 1	+	0.0000830	_1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0_	2	125	1_	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179

Вещество: 0337 Углерод оксид

Nº	Nº	Nº	Тил	Учет	Выброс	F		лерод от Лето			Зима	
пл.	цех	ист.			(r/c)							
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1		11.0700000	1	0,0013	1656,70	4,3844	0,0013	1695,84	
0_	1	5	_ 1		53.3700000	1	0,0012	3494,24	6,0080	0,0011	3565,84	
0	1_	_36	1	%	0.0036920	1	0,0013	37,05	0,5000	0,0024	28,68	
_ 0 _	1	37	1	%	0.0036920	1	0,0082	17,10	0,5000	0,0092	17,15	
<u> </u>	1_	<u>123</u>	1		134.1150000	1	0,0202	1603,38	8,1379	0,0194		
_ 0	_2	3_	1	+	38.1840000	1	0,0035	1875,00	5,2872			
0	2	4_	_1	+	2.6360000	1	0,0004	1438,37	3,6668	0,0004	1466,88	
0_	_2	5	1	+	15.0700000	1	0,0004	3023,71	4,7438	0.0004	3100,88	
0	2	123	1	+	157.0470000		0,0192	1784,23	9,6133	0,0186		
0	.2	124	1_	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	
0	2	125	1	+	0.0132820		0,0022	57,82	0,6502	0,0014	75,59	
0	2	126	_1	+	0.0132820	1	0,0009	99,86	1,1230	0,0009	100,40	
0	2	127	1_	_ +	0.0076320	1	0,0018	44,46		0,0025	37,66	
0	_2	<u>12</u> 9	1	+	0.0025530	1	0,0005	52,42			71,89	
Итого	oro: 212.9944150						0,0408			0,0410		.,3.20

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
				<u> </u>			Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1_	4	_1_		0.0002090	1	0,0025	1656,70	4,3844	0,0024	1695.84	
0	1_	_ 5_	_1	-	0.0013720	1	0,0030	3494,24	6,0080	0,0029	3565,84	
0	_1	123	_1_		0.0000019	-	0,0000	1603,38	8,1379	0,0000		
0_	2_	_3_	_1_	+	0.0005440	1	0,0050	1875,00	5,2872	0,0048		
0	2	4	1_	+	0.0001450	1	0,0023	1438,37	3,6668	0,0022		
<u> </u>	_2	5	1	+	0.0003250	1	0,0010	3023,71	4,7438			
0	2	123	_ 1 _	+	0.0000020	1	0,0000	1784,23		0,0000		
Итого): <u> </u>				0.0010160		0,0083			0,0079		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Вещество: 2902 Твердые частицы

№ пл.	Nº цех	№ ист.	l .	Учет	Выброс (г/с)	F		Лето	<u></u>		Зима
							Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm Um (м/c)
0	2	3	_ 1_	+	3.3060000	3	0,0153	937,50	5,2872	0.0146	959,53 5,6298
Итог	<u>o:</u>				3.3060000		0,0153		<u> </u>	0,0146	

Вещество: 2904 Мазутная зола теплоэлектростанций

ııı. Nö	№ цех	№ ист.	l .	Учет	Выброс (г/с)	F		Лето			Зима	
	-		ļ				Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0_	_1	_4	1		0.3930000			1449,61	4,3844	0.0167		
0	1	_5_	1	-	2.8870000	1,5	0,0237	3057,46	6,0080	0.0228	3120,11	
0	_2	_3_	_1_	+	1.0790000	1,5	0,0374	1640,63			1679.18	
Итог	o:				1.0790000		0,0374			0,0357		

Выбросы источников по группам суммации

Группа суммации: 6009

№ пл.	№ цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F	. оуминации	Лето			Зима	
<u> </u>	<u> </u>	<u> </u>						Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (M/c)
0	1	4	1_		0301	41.6600000	1	0,0988	1656,70	4.3844	0,0944	1695.84	
0	_ 1	_ 4	<u> </u>		0330	142.2500000	1	0,1688	1656,70	4,3844	0.1612	1695,84	.,

0	1	5	1	-	0301	206.5800000	1	0.0906	3494.24	6,0080	0.0870	3565,84	6,3263
0	1	5	1	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	1	36	1	%	0301	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0	1	37	1	%	0301	0,0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875
0	1	123	1	-	0301	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	_1	+	0301	49.6000000	1	0,0916	1875,00	5,2872	0,0875	1919,06	5,6298
0	2	3	1	+	0330	223.9110000	1	0,2068	1875,00	5,2872	0,1976	1919,06	5,6298
0	2	4	1	+	0301	14.3790000	1	0,0455	1438,37	3,6668	0,0438	1466,88	3,8354
0	_ 2	4	1	+	0330	0.2880000	1	0,0005	1438,37	3,6668	0,0004	1466,88	3,8354
0	2	5	1 .	+	0301	82.2000000	1	0,0483	3023,71	4,7438	. 0,0459	3100,88	5,0408
0	2	5	1	+	0330	1.6450000	1	0,0005	3023,71	4,7438	0,0005	3100,88	5,0408
0	2	123	1_	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	_1_	+	0301	0.0004500	_1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	124	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	_+	0301	0.0004500	_1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	125	_1_	+	0330	0.000830	1	0,0001	57,82	. 0,6502	0,0001	75,59	1,1179
0	2	126	_1_	+	0301	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	126	_1_	+	0330	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0301	0.0002080	_1	0,0010	44,46	0,5000	0,0014	37,66	0,5898
0	2	127	1	+	0330	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129_	1	+	0301	0:0000700	_1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
0	2	129	_ 1	+	0330	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итого	<u>:</u>					424.3803290		0,6920			0,7059		

Группа суммации: 6030

								. •)					
№ пл.	Nº цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F	Лето			Зима		
								Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0184	0.0036460	1	0,0022	1656,70	4,3844	0,0021	1695,84	4,6520
0	1	4	_1_	-	0325	0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	1	5	1	-	0184	0.0268210	1	0,0029	3494,24	6,0080	0,0028	3565,84	6,3263
	1	5	1	-	0325	0.000000e0		0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	3	1_	+	0184	0.0119570	1	0,0055	1875,00	5,2872	0,0053	1919,06	5,6298
_ 0	2	3	1	+	0325	0.0001900	1	0,0000	1875,00	5,2872	0.0000	1919.06	5,6298
Итого	:					0.0121470		0,0055		•	0,0053		

Группа суммации: 6034

	- Pythia Cymhadani COO4												
№ пл.	№ цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Пето		Зима		
 _								Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Úm (м/с)
_ 0	1	4	1_	-	0184	0.0036460		0,0022	1656,70	4,3844	0,0021	1695,84	4,6520
0	1	4	1		0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1_	_ 5	1		0184	0.0268210	1	0,0029	3494,24	6,0080	0,0028	3565,84	6,3263
0	1	5	1		0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	2	3_	_1_	+_	0184	0.0119570	_ 1	0,0055	1875,00	5,2872	0,0053	1919,06	5,6298
0	_2	3	1	+	0330	223.9110000	1	0,2068	1875,00	5,2872	0,1976	1919,06	5,6298
0	2	4_	1_	+	0330	0.2880000	1	0,0005	1438,37	3,6668	0,0004	1466,88	3,8354
0	2_	_ 5	1	+	0330	1.6450000	1	0,0005	3023,71	4,7438	0,0005	3100,88	5,0408
0	2	124	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	_1_	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2_	126	_1_	_ + _	0330	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0.	2_	127	1	+	0330	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0330	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итого	<u>:</u>				_	225.8562580		0,2138			0,2041		,

Группа суммации: 6204

							7 11110	Суммаци	71. UZUT				
Nº	Nº	Ne	Тип	Учет	Код	Выброс	F [Лето			Зима	
пл.	цех	ист.			в-ва	(r/c)							
	<u> </u>							Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (м/c)
0_	1	4_	1		0301	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	4	1	-	_0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695.84	
0	1_1_	4	1	-	2904	0.3930000	1,5	0,0175	1449,61	4,3844	0,0167	1483,86	
_0	1	5	1	-	0301	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	5	_ 1		0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	1	5	_1	-	2904	2.8870000	1,5	0,0237	3057,46	6,0080	0,0228	3120,11	6,3263
0	1_	_36	1	%	0301	0.0032000	1	0,0234	37,05		0,0415	28,68	0,6921
0	1	37	1	%	0301	0.0032000	1	0,1420	17,10		0,1600	17,15	0.7875
_0	1	123	_ 1	-	0301	44.7050000	1	0,1347	1603,38		0,1297	1631,56	8,7327
0	_2	3_	1	+	0301	49.6000000	1	0,0916	1875.00		0.0875	1919,06	5,6298
0	2_	_ 3	1	+	0330	223,9110000	1	0,2068	1875,00		0,1976	1919,06	5,6298
0	2	3	1	+	2904	1.0790000	1,5	0.0374	1640,63		0,0357	1679,18	5,6298
0	2	_ 4 _	1	+	0301	14.3790000	1	0,0455	1438,37	3,6668	0,0438	1466,88	
0	_ 2 ¯	4	1	+	0330	0.2880000	1	0,0005	1438.37	3,6668	0,0004	1466,88	3,8354
0	2	5	1	+	0301	82.2000000	1	0,0483	3023,71	4,7438	0,0459	3100,88	
0	2	5	1	+	0330	1,6450000	1	0,0005	3023,71	4,7438	0.0005	3100,88	5,0408
0	2	123	1	+	0301	52.3490000	- i l	0,1282	1784,23				5,0408
						==:2:00000		0,1202	1104,20	9,0133	0,1243	1807,49	10,2041

0	2	124	1	+	0301	0.0004500	1	0.0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	124	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0301	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	125	1	+	0330	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0301	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	126	1	+	0330	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0301	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	0,5898
0	2	127	1	+	0330	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0301	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
0	2	129	1	+	0330	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итого): 					425.4593290		0,7294			0,7416		

Расчет проводился по веществам (группам суммации)

	Расчет провод						
Код	Наименование вещества	Пре,	цельно Допус Концентрац і		*Поправ. коэф. к ПДК/ОБУ В		нентр. Новая
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
0124	Кадмий и его соединения	ПДК м/р	0.0030000	0.0030000	1	Да	Да
0140	Медь и его соединения (в пересчете на медь)	ПДК м/р	0.0030000	0.0030000	1	Нет	Нет
0164	Никель оксид	ПДК м/р	0.0100000	0.0100000	1	Нет	Нет
0183	Ртуть (Ртуть металлическая)	ПДК м/р	0.0006000	0.0006000	1	Her	Нет
0184	Свинец и его соединения	ПДК м/р	0.0010000	0.0010000	1	Да	Да
0228	Хрома трехвалентные соединения (в пересчете на хром)	ОБУВ	0.0100000	0.0100000	1	Нет	Нет
0229	Цинк и его соединения (в пересчете на цинк)	ПДК м/р	0.2500000	0.2500000	1	Нет	Нет
0301	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
0325	Мышьяк и его соединения	ПДК м/р	0.0080000	0.0080000	1	Да	Да
	Углерод (Сажа)	ПДК м/р	0.1500000	0.1500000	1	Нет	Нет
0330	Сера диоксид (Ангидрид сернистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да
	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с * 10	0.0000050	0.0000500	1	Да	Да
2902	Твердые частицы	ПДК м/р	0.3000000	0.3000000	1	Да	Да
2904	Мазутная зола теплоэлектрос- танций	ПДК м/р	0.0200000	0.0200000	1	Нет	Нет
6009	Группа сумм. (2) 301 330	Группа	-		1	Да	Да
	Группа сумм: (2) 184 325	Группа	-	-	1	Да	Да_
6034	Группа сумм. (2) 184 330	Группа			1	Да	Да
6204	Группа суммации (3) 301 330 2904	Группа			1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

№ поста	Наименование	Координа	ты поста
		x	у
1	ул.Кедышко, 45	-480	5800

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6			
0184	Свинец и его соединения	8,2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013			
0337	Углерод оксид	0.257	0.257	0.257	0.257	0.257			
0703	Бенз/а/пирен (3,4-Бензпирен)	7.7E-7	7.7E-7	7.7E-7	7.7E-7	7.7E-7			
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
2 ул.	Тростенецкая, 4			_	-4185	62			

Код в-ва	Наименование вещества		Фонс	вые концент	грации	
		Штиль	Север	Восток	Юг	Запад

0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2,1E-6	2.1E-6
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.037	0.037	0:037	0.037	0:037
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
3 ул	. Каховская, 72				-5200	5160

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6			
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
4 ул.	Жилуновича, 3				-730	-63			

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
ļ		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.052	0.052	0.052	0.052	0.052
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
5ул.	Скорины, 18				2044	45

Код в-ва	Наименование вещества	Фоновые концентрации						
ļ		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1,6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
6 ул.	Селицкого, 33				4562	-534		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2902	Твердые частицы	0.06	0.035	0.083	0.055	0.044		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
7 ул.	Тростенецкая, 10Б	-			-3840	-1		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6		
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2902	Твердые частицы	0.037	0.037	0.037	0.037	0.037		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
8 пр.	Партизанский, 66 А				-345	-101		

Код в-ва	Наименование вещества	Фоновые концентрации					
		Штиль	Север	Восток	Юг	Запад	

0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0,081
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.052	0.052	0.052	0.052	0.052
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области Расчетные площадки

Nº	Тип	Полі	юе описа	ание плош	адки	Ширина, (м)			• '		Высота, (м)	Комментарий
		Коорд серед 1-й стор	цины	cepe	Координаты середины 2-й стороны (м)							
		Х	Υ	Х	Y		Х	Υ				
1	Заданная	-9000	-162	9000	9000 -162		200	200	2	-		

Расчетные точки

Nº	Координа	Координаты точки		Тип точки	Комментарий
	(n	4)	(M)		
1	Х	Ý		·	
4	533,00	405,00	2	на границе СЗЗ	
5	840,00	173,00	2	на границе С33	
6	1010,00	-162,00	2	на границе СЗЗ	
7	920,00	-542,00	2	на границе С33	
8	533,00	-600,00	2	на границе СЗЗ	_
9	233,00	-468,00	2	на границе СЗЗ	
10	-42,00	-162,00	2	на границе С33	
11	-19,00	404,00	2	на границе СЗЗ	
1	966,00	114,00	2	на границе жилой зоны	
2	1387,00	-96,00	2	на границе жилой зоны	
3	638,00	-714,00	2	на границе жилой зоны	

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0.01

Код	Наименование	Сумма Ст/ПДК
0124	Кадмий и его соединения	0.0007697
	Медь и его соединения (в пересчете на медь)	0.0005024
0183	Ртуть (Ртуть металлическая)	0.0003929
0228	Хрома трехвалентные соединения (в пересчете на хром)	0.0002010
0229	Цинк и его соединения (в пересчете на цинк)	0.0000271
0325	Мышьяк и его соединения	0.0000230
0328	Углерод (Сажа)	0.0083252

Результаты расчета по веществам (расчетные точки)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
2	1387	-96	2	0.01	267	5,00	0.000	0.000	4
11	-19	404	2	8.6e-3	141	5,00	0.000	0.000	3
7	920	-542	2	7.2e-3	308	5,00	0.000	0.000	3
1	966	114	2	6.8e-3	244	5,00	0.000	0.000	4
3	638	-714	2	6.8e-3	339	5,00	0.000	0.000	4
6	1010	-162	2	6.5e-3	271	5,00	0.000	0.000	3
4	533	405	2	6.2e - 3	191	5,00	0.000	0.000	3
5	840	173	2	5.5e-3	232	5,00	0.000	0,000	3
10	-42	-162	2	4.6e-3	89	5,00	0.000	0.000	3
8	533	-600	2	4.4e-3	346	5,00	0.000	0.000	3
9	233	-468	2	3.1e-3	31	5,00	0.000	0.000	3

Вещество: 0184 Свинец и его соединения

			сщоотво.	0101 4 111		осдинения	•		
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(м)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
2	1387	-96	2	0.09	267	5,00	0.082	0.083	4
11	-19	404	2	0.09	141	5,00	0.083	0.083	3
7	920	-542	2	0.08	308	5,00	0.083	0.083	3
3	638	-714	2	0.08	339	5,00	0.083	0.083	4
6	1010	-162	2	0.08	271	5,00	0.083	0.083	3
1	966	114	2	0.08	244	5,00	0.082	0.083	4
4	533	405	2	0.08	191	5,00	0.083	0.083	3
5	840	173	2	0.08	232	5,00	0.083	0.083	3
8	533	-600	2	0.08	346	5,00	0.083	0.083	3
10	-42	-162	2	0.08	89	5,00	0.083	0.083	3
9	233	-468	2	0.08	31	5,00	0.083	0.083	3

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Вещество. 0301 — A301a диоксид (A301 (IV) оксид)												
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тил			
].	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки			
2	1387	-96	2	0.34	262	5,00	0.245	0.301	4			
7	920	-542	2	0.34	309	5,00	0.286	0.305	3			
5	840	173	2	0.33	227	4,10	0.277	0.303	3			
1	966	114	2	0.32	237	4,00	0.272	0.303	4			
4	533	405	2	0.32	195	1,90	0.301	0.309	3			
11	-19	404	2	0.32	154	1,90	0.303	0.310	3			
10	-42	-162	2	0.32	86	1,90	0.311	0.313	3			
6	1010	-162	2	0,32	255	1,90	0.303	0.309	3			
9	233	-468	2	0.32	30	1,90	0.312	0.314	3			
8	533	-600	2	0.32	347	1,90	0.311	0.312	3			
3	638	-714	2	0.32	316	1,90	0.309	0.312	4			

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Коорд	Коорд	Высота	Концентр.		Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(M)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
2	1387	-96	2	0.14	267	5,00	0.011	0.054	4
3	638	-714	2	0.11	339	5,00	0.034	0.054	4
11	-19	404	2	0.10	141	5,00	0.011	0.054	3
7	920	-542	2	0.10	308	5,00	0.023	0.054	3
8	533	-600	2	0.09	346	5,00	0.044	0.054	3
10	-42	-162	2	0.09	89	5,00	0.039	0.055	3
6	1010	-162	2	0.08	271	5,00	0.016	0.054	3
1	966	114	2	0.08	244	5,00	0.011	0.054	4
9	233	-468	2	0.08	31	5,00	0.048	0.055	3
4	533	405	2	0.08	191	5,00	0.011	0.054	3.
5	840	173	2	0.07	232	5,00	0.011	0.054	3

Вещество: 0337 Углерод оксид

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
9	233	-468	2	0.22	61	5,00	0.223	0.224	3
10	-42	-162	2	0.22	100	5,00	0.221	0.224	3
8	533	-600	2	0.22	8	5,00	0.218	0.219	3
3	638	-714	2	0.22	353	5,00	0.216	0.217	4
11	-19	404	2	0.21	139	5,00	0.206	0.210	3
7	920	-542	2	0.21	308	5,00	0.209	0.210	3
6	1010	-162	2	0.21	255	5,00	0.204	0.206	3
4	533	405	2	0.21	176	5,00	0.202	0.204	3
5	840	173	2	0.21	247	-1,40	0.203	0.204	3
1	966	114	2	0.20	225	5,00	0.201	0.203	4
2	1387	-96	2	0.20	259	5,00	0.196	0.200	4

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
2	1387	-96	- 2	0.04	265	5,00	0.033	0.033	4
4	533	405	2	0.04	194	4,40	0.033	0.033	3
11	-19	404	2	0.04	141	5,00	0.033	0.034	3
3	638	-714	2	0.04	339	5,00	0.034	0.034	4
5	840	173	2	0.04	227	4,20	0.033	0.033	3
7	920	-542	2	0.04	308	5,00	0.033	0.034	3
11	966	114	2	0.04	238	4,00	0.033	0.033	4
10	-42	-162	2	0.04	89	5,00	0.034	0.034	3
8	533	-600	2	0.03	347	5,00	0.034	0.034	3
9	233	-468	2	0.03	32	5,00	0.034	0.034	3
6	1010	-162	2	0.03	271	5,00	0.033	0.034	3

Вещество: 2902 Твердые частицы

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
10	-42	-162	2	0.18				0.172	3
11	-19	404	2	0.18	141	5,00		0.167	3
2	1387	-96	2	0.18	267	5,00		0.164	4
4	533	405	2	0.18	191	5,00	0.167	0.167	3
7	920	-542	2	0.18	308	5,00	0.165	0.165	3
1	966	114	2	0.18	244	5,00	0.165	0.165	4
6	1010	-162	2	0.18	271	5,00	0.165	0.165	3
3	638	-714	2	0.18	339	5,00	0.164	0.164	4
5	840	173	2	0.18	232	5,00	0.165	0.165	3
8	533	-600	2	0.17	346	5,00	0.164	0.164	3
9	233	-468	2	0.17	45	3,30	0.172	0.172	3

Вещество: 2904 Мазутная зола теплоэлектростанций

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
2	1387	-96	2	0.03	267	5,00	0.000	0.000	4
11	-19	404	2	0.02	141	5,00	0.000	0.000	3
7	920	-542	2	0.02	308	5,00	0.000	0.000	3
1	966	114	2	0.02	244	5,00	0.000	0.000	4
_3	638	-714	2	0.02	339	5,00	0.000	0.000	4
6	1010	-162	2	0.02	271	5,00	0.000	0.000	3
4	533	405	2	0.01	191	5,00	0.000	0.000	3
_ 5	840	173	2	0.01	232	5,00	0.000	0.000	3
10	-42	-162	2	0.01	89	5,00	0.000	0.000	3
8	533	-600	2	0.01	346	5,00	0.000	0.000	3
9	233	-468	2	7.4e-3	31	5.00	0.000	0.000	3

Вещество: 6009 Группа сумм. (2) 301 330

. N º	Коорд	Коорд	Высота	Концентр.		Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(м)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
2	1387	-96	2	0.46	266	5,00	0.239	0.355	4
7	920	-542	2	0.44	_308	5,00	0.309	0.359	3
11	-19	404	2	0.42	141	5,00	0.248	0.317	3
6	1010	-162	2	0.40	271	5,00	0.290	0.357	3
1	966	114	2	0.39	243	5,00	0.277	0.356	_4
5	840	173	2	0.39	231	5,00	0.286	. 0.357	3
10	-42	-162	2	0.38	87	1,90	0.363	0.368	3
9	233	-468	2	0.38	31	1,90	0.366	0.368	3
3	638	-714	2	0.37	340	1,90	0.359	0.366	4
8	533	-600	2	0.37	347	1,90	0.363	0.367	3
4	533	405	2	0.37	194	1,90	0.345	0.362	3

Вещество: 6030 Группа сумм. (2) 184 325

			/-/						
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тил
	Х(м)	Y (м)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
2	1387	-96	2	0.09	267	5,00	0.082	0.083	4
11	-19	404	2	0.09	141	5,00	0.083	0.083	3
7	920	-542	2	0.08	308	5,00	0.083	0.083	3
3	638	-714	2	0.08	339	5,00	0.083	0.083	4
6	1010	-162	2	0.08	271	5,00	0.083	0:083	3
1	966	114	2	0.08	244	5,00	0.082	0.083	4
4	533	405	2	0.08	191	5,00	0.083	0.083	3
5	840	173	2	0.08	232	5,00	0.083	0.083	3
8	533	-600	2	0.08	346	5,00	0.083	0.083	3
10	-42	-162	2	0.08	89	5,00	0.083	0.083	3
9.	233	-468	2	0.08	31	5,00	0.083	0.083	3

Вещество: 6034 Группа сумм. (2) 184 330

Вещество: 00341 рунна сумм: (2) 104 330											
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип		
	Х(м)	Y(M)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки		
2	1387	-96	2	0.21	267	5,00	0.074	0.137	4		
3	638	-714	. 2	0.19	339	5,00	0.117	0.137	4		
11	-19	404	2	0.19	141	5,00	0.093	0.137	3		
7	920	-542	2	0.18	308	5,00	0.105	0.137	3		
-8	533	-600	2	0.17	346	5,00	0.127	0.137	3		
10	-42	-162	2	0.17	89	5,00	0.122	0.137	3		
6	1010	-162	2	0.17	271	5,00	0.099	0.137	3		
9	233	-468	2	0.16	31	5,00	0.131	0.137	3		
4	533	405	2	0.16	191	5,00	0.094	0.137	3		
1	966	114	2	0.16	244	5,00	0.087	0.137	4		
5	840	173	2	0.15	232	5,00	0.091	0.137	3		

Вещество: 6204 Группа суммации (3) 301 330 2904

	<u> </u>								
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	X(M)	Y(M)		(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
2	1387	-96	2	0.29		5,00	0.140	0.215	4
7	920	-542	2	0.27	308	5,00	0.185	0.217	3
11	-19	404	2	0.26	141	5,00	0.147	0.192	3
6	1010	-162	2	0,25	271	5,00	0.173	0.216	3
1	966	114	2	0.24	243	5,00	0.164	0.216	4
5	840	173	2	0.24	231	5,00	0.170	0.216	3
4	533	405	2	0.23	192	5,00	0.148	0.193	3
10	-42	-162	2	0.23	88	1,90	0.220	0.223	3
9	233	-468	2	0.23	31	1,90	0.222	0.223	3
3	638	-714	2	0.23	340	1,90	0.217	0.222	4
8	533	-600	2	0.23	347	1,90	0.220	0.222	3

Максимальные концентрации и вклады по веществам (расчетные площадки)

Вещество: 0164 Никель оксид

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен ПД		Напр.ветра	Скор.ветр	oa 🖣	Рон (д. ПДК)	Фон до исключения
-200	-1962		0.02	19	5	,00	0.000	0.000
	Площадка	а Цех	Исто	чник Вкла	двд. ПДК		Вклад %	_
	0	2	3	3	0.02		100,00	
2200	-762		0.02	289	5	,00	0.000	0.000
•	Площадка	. Цех	Исто	чник Вкла	двд. ПДК		Вклад %	
	0	2	3	}	0.02		100,00	
-800	-1562		0.02	41	5	,00	0.000	0.000
	Площадка	і Цех	Исто	чник Вкла	двд. ПДК	-	Вклад %	
	0	2	3	}	0.02		100,00	

Вещество: 0184 Свинец и его соединения

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
-3800	-162		0.09	90	5,00	0.087	0.089
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	3	ı	3.6e-3	3,92	
-4200	38		0.09	92	5,00	0.087	0.089
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	3	ı	3.3e-3	3,64	
-4000	-162		0.09	90	5,00	0.087	0.088
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	3	l	3.4e-3	3,80	

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен [.] ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
2000	-1562		0.43	312	5,00	0.219	0.298
	Площадка	а Цех	Источ	чник Вкла	двд. ПДК	Вклад %	
	Q	2	3	1	0.08	19,38	
	0	2	12	.3	0.07	16,23	
	0	2	5	;	0.04	9,00	
2200	-1562		0.43	308	5,00	0.215	0.295
	Площадка	і Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	3		0.08	18,97	
	0	2	12	3	0.07	16,45	
	0	2	5	i	0.04	9,23	
2000	-1762		0.43	315	·5,00	0.217	0.295
	Площадка	а Цех	Источ	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	1	0.08	18,95	
	0	2	12	:3	0.07	16,07	
	0	2	5	•	0.04	8,93	

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Площадка: 1
Поле максимальных концентраций

Коорд Х(м)		Концен ПДІ	()	Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
800	-1562		0.20	41	5,00	0.011	0.055
	Площадка	і Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	3	0.19	94,25	
	0	2	4	1	4.0e-4	0,19	
	. 0	2	5	<u> </u>	3.5e-4	0,17	
	1962		0.20	19	5,00	0.011	0.055
	Площадка	і Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	3	0.19	94,28	
	0	2	4	ļ	4.0e-4	0,20	
	0	2	5		3.3e-4	0,16	
			0.20	58	5,00	0.011	0.055
	Площадка	і Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	3	0.19	94,28	
	0	2	5	5	3.8e-4	0,18	
	0	2	4	ļ	3.1e-4	0,15	

Вещество: 0337 Углерод оксид

Площадка: 1 Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	пді		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
-400			0.26	54	5,0	0.250	0.255
	Площадка	а Цех	Исто	чник Вкл	ад в д. ПДК	Вклад %	
	0	2	12	23	7.4e-3	2,87	
	0	2	3	3	8.8e-4	0,34	
	0	2	4		2.4e-4	0,09	
			0.26	77	5,0	0.247	0.252
	Площадка	а Цех	Исто		ад в д. ПДК	Вклад %	
	0	2	12	23	8.6e-3	3,33	
	0	2	3	3	1.8e-3	0,71	
	0	2	4		2.9e-4	0,11	
	762		0.25		5,0	0.243	0.249
	Площадка	і Цех	Источ		ад в д. ПДК	Вклад %	
	0	2	12		8.7e-3	3,43	
	0	2	3	}	1.9e-3	0,75	
	0	2	4	•	3.4e-4	0,14	

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Площадка: 1 Поле максимальных концентраций

Коорд Х(м)		Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
	1562		0.04	31	5,00	0.033	
	Площадка	Цех	Источ	іник Вкла	двд. ПДК	Вклад %	
	0	2	3		4.6e-3	11,45	
	Ü	2	4		2.1e-3	5,19	
		2	5		6.1e-4	1,52	
	<u>-1362</u>		0.04		5,00		0.034
	Площадка	а Цех	Источ	іник Вкла	двд. ПДК	Вклад %	
	0	2	3		4.6e-3	11,37	
	0	2	4		2.0e-3	5,02	
	0	2	5		6.1e-4	1.53	

-600	-1562		0.04	37	5,00	0.033	0.034
	Площадка	Цех	Источник	Вклад в д.	ПДК	Вклад %	 -
	0	2	3	4.	6e-3	11,47	
	0	2	4	2.	1e-3	5,25	
	0	2	5	6.	8e-4	1,70	

Вещество: 2902 Твердые частицы

Площадка: 1 Поле максимальных концентраций

Коорд Х(м)		Концен [.] ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
4600	-5362		0.27	-	•	- 0.273	
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	0	0		0.00	0,00	
4400	-5362		0.26	-		0.264	0.264
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	0	0		0.00	0,00	
4600	5162		0.26			- 0.263	0.263
	Площадка	і Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	0	0		0.00	0.00	

Вещество: 2904 Мазутная зола теплоэлектростанций

Площадка: 1 Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен ПД		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
0	1438		0.03	165	5,00	0.000	
	Площадка 0	а Цех 2	Источ 3	іник Вкла	двд. ПДК 0.03	Вклад % 100,00	
	638	<u> </u>	0.03	119	5,00	<u>'</u>	0.000
	Площадка 0	2	Источ 3	іник Вкла	двд. ПДК 0.03	Вклад % 100,00	
200	1762		0.03	8	5,00	0.000	0.000
	Площадка 0	а Цех 2	Источ 3	ник Вкла	д в д. ПДК 0.03	Вклад % 100,00	

Вещество: 6009 Группа сумм. (2) 301 330

Площадка: 1 Поле максимальных концентраций

Коорд Х(м)		Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
1600			0.60	315	5,00	0.220	
	Площадка	а Цех	Исто	чник Вкла	ад в д. ПДК	Вклад %	
	0	2	3		0.27	45,76	
	0	2	12	23	0.06	9,78	
	0	2		<u> </u>	0.03	4,66	
1600	1162		0,60	311	5,00	0.230	0.353
	Площадка	ι Цех	Исто	чник Вкла	адвд. ПДК	Вклад %	
	0	2	3	3	0.27	45,42	
	0	2	12	23	0.06	9,50	
		2	5		0.03	4,67	
1800			0.59	311	5,00		0.352
	Площадка	Цех	Исто	чник Вкла	ад в д. ПДК	Вклад %	
	0	2	3		0.28	46,63	·
	0	2	12	.3	0.06	10,89	
	0	2	5	,	0.03	5,52	

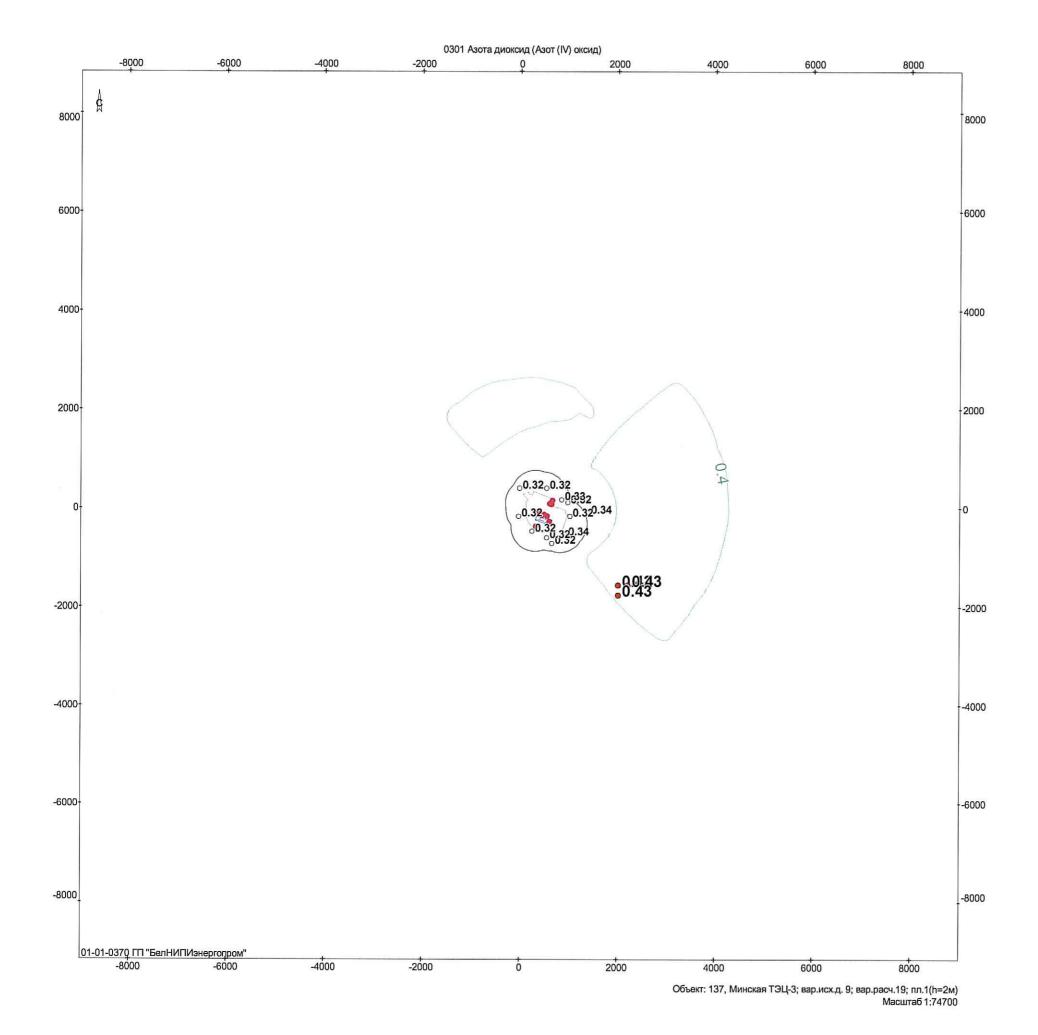
Вещество: 6030 Группа сумм. (2) 184 325

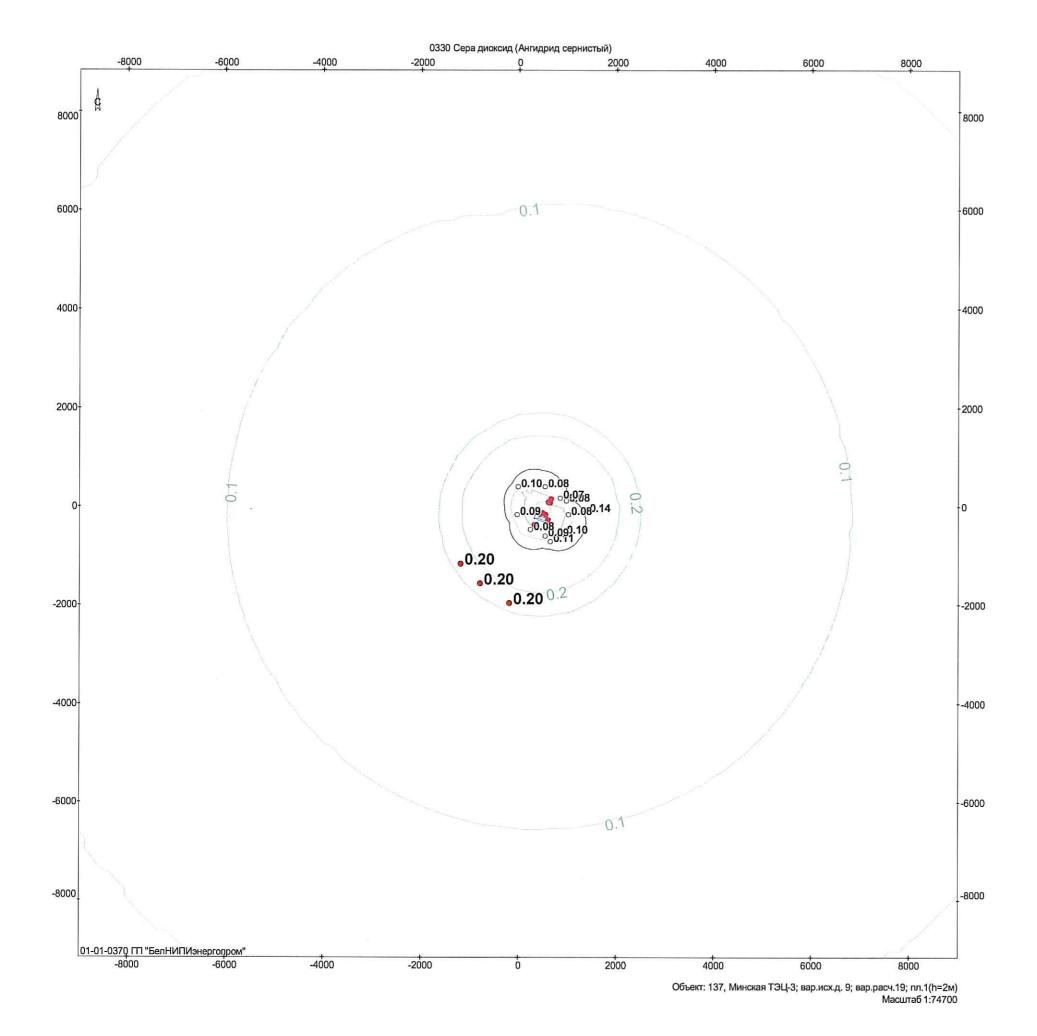
Площадка: 1

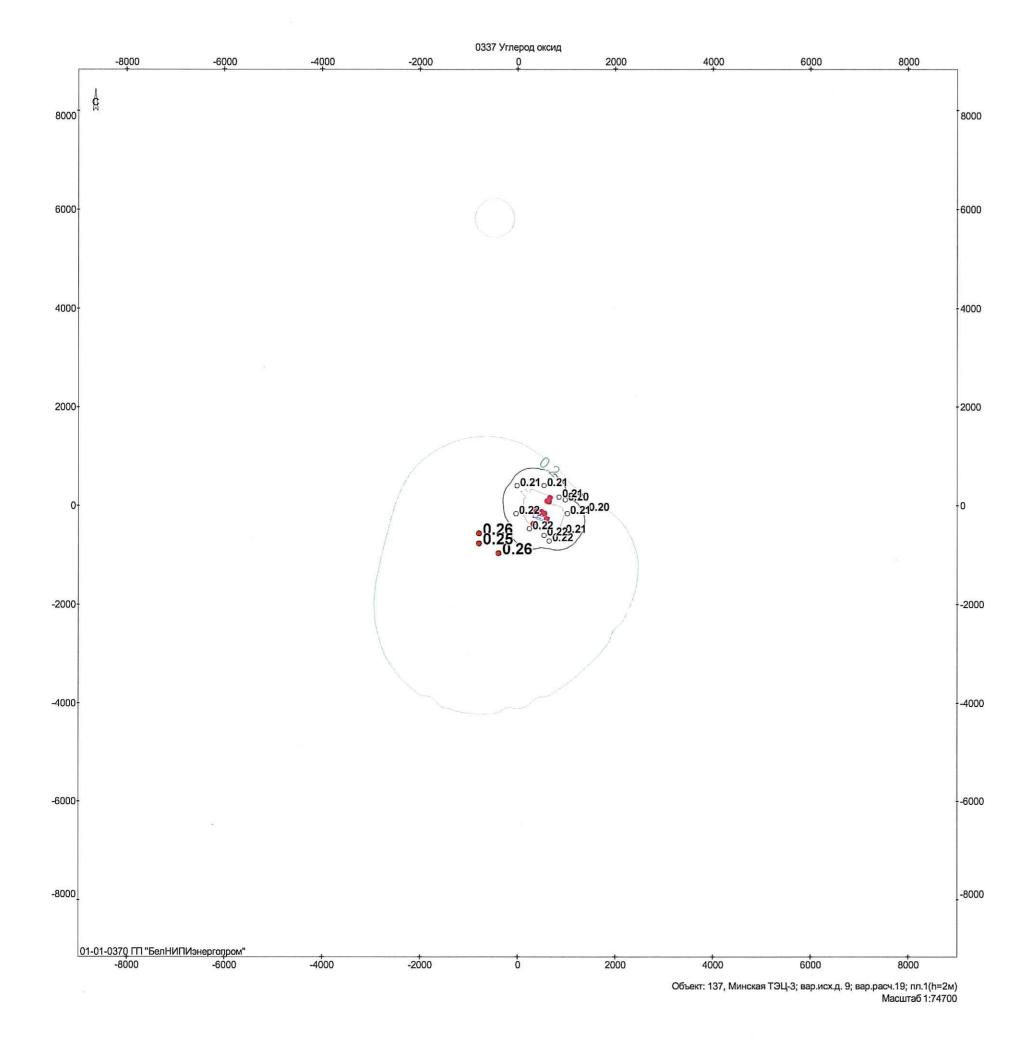
Поле максимальных концентраций

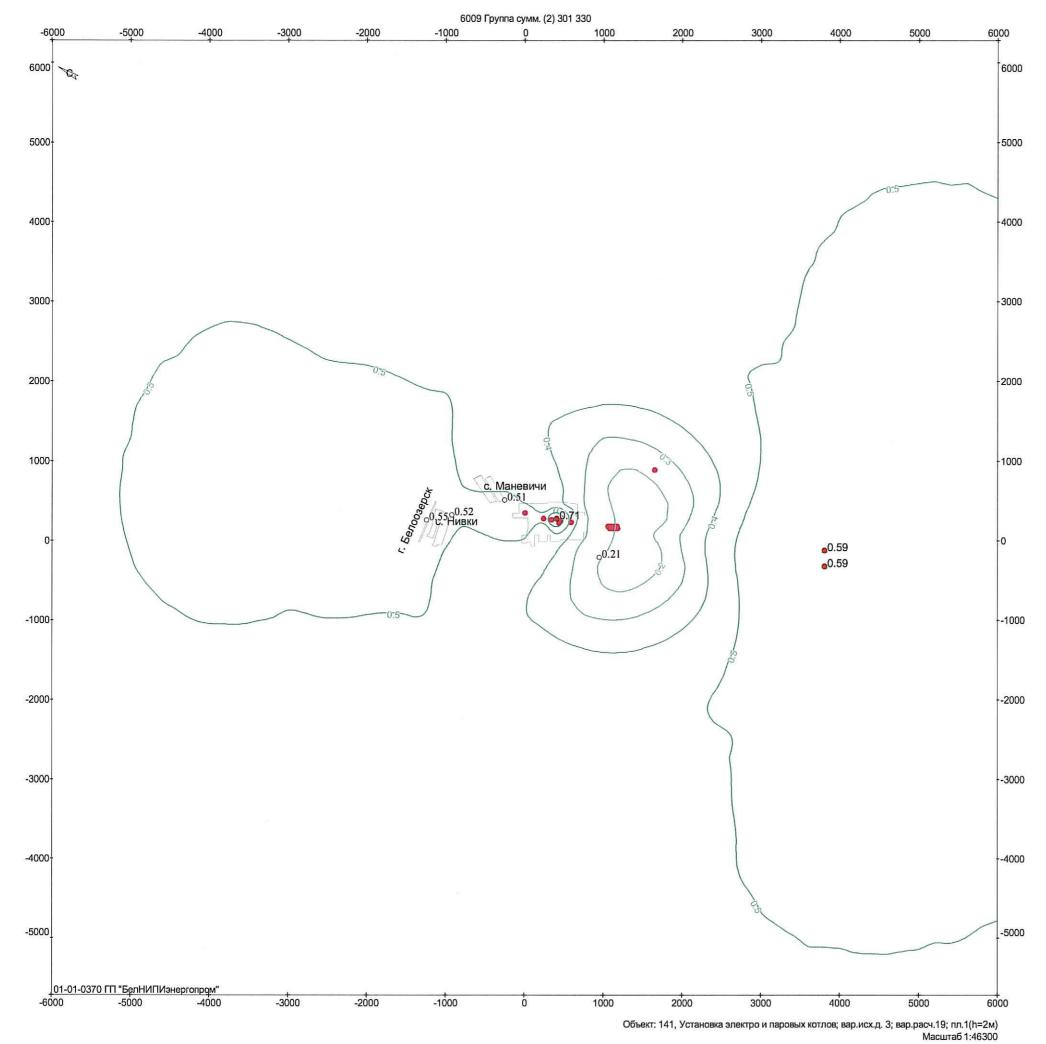
Коорд Х(м)	Коорд Ү(м)	Концен ПД		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
	-162		0.09	90	5,00	0.087	0.089
	Площадка	а Цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2_	3		3.6e-3	3,93	
-4200	38		0.09	92	5,00	0.087	0.089
	Площадка	цех	Источ	ник Вкла	двд. ПДК	Вклад %	
	0	2	3		3.3e-3	3,64	
-4000	-162		0.09	90	5,00	0.087	0.088
• -	Площадка	а Цех	Источ	іник Вкла	двд. ПДК	Вклад %	
	0	2	3		3.4e-3	3,81	

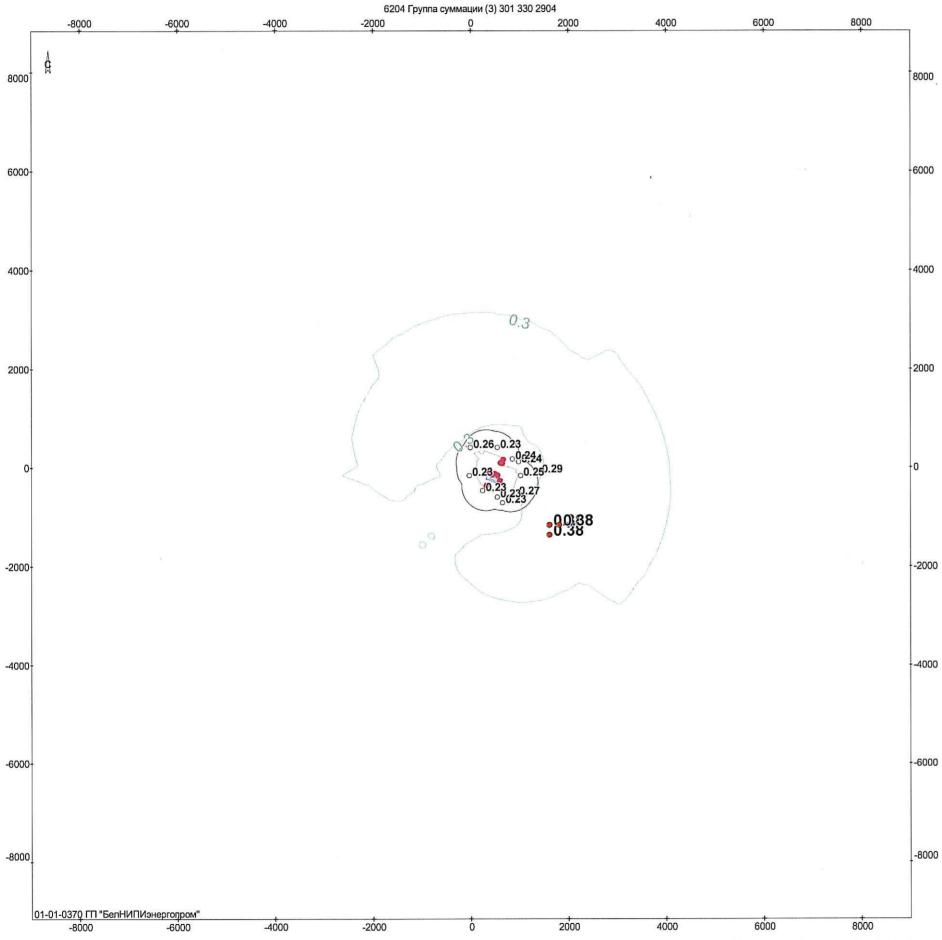
Вещество: 6034 Группа сумм. (2) 184 330


Площадка: 1 Поле максимальных концентраций


Коорд Х(м)	Коорд Ү(м)	Концен ПДІ	()		Скор.ветра	Фон (д. ПДК)	Фон до исключения
1400			0.26	321	5,00	0.066	0.137
	Площадка	а Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	3	0.19	74,29	
	0	2	5	5	2.6e-4	0,10	
	0	2		<u> </u>	1.2e-4	0,05	
1200	1562		0.26	331	5,00	0.064	0.137
	Площадка	а Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	3	0.19	75,08	
	0	2	5	5	2.6e-4	0,10	
	0	2	4		1.5e-4	0,06	
1000	1562		0.26	338	5,00	0.067	0.137
	Площадка	а Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	2	3	3	0.19	73,99	
	0	2	5	i	2.5e-4	0,09	
	O	2	4	,	1.4e-4	0,05	


Вещество: 6204 Группа суммации (3) 301 330 2904


Площадка: 1 Поле максимальных концентраций


Коорд Х(м)		Концен ПДІ		Напр.ветра	1	Скор.ветра	Фон (д. ПДК)	Фон до исключения
1600	-1362		0.38	3	15	5,00	0.128	
	Площадка	а Цех	Исто	чник Вк	лад	в д. ПДК	Вклад %	
	0	2	3			0.19	49,33	
	0	2	12	23		0.04	9,37	
	0	2_	5			0.02	4,47	
1600			0.38	3.	11	5,00	0.135	0.214
	Площадка	а Цех	Исто	чник Вк	пад:	в д. ПДК	Вклад %	
	0	2	3			0.18	49,00	
	0	2	12	23		0.03	9,09	
	0	2	5			0.02	4,47	
1800	<u>-1162</u>		0.38	30)6 <u> </u>	5,00	0.123	0.213
	Площадка	а Цех	Исто	чник Вк	пад	в д. ПДК	Вклад %	
	0	2	3			0.19	50,03	
	0	2	12	23		0.04	9,96	
	0	2	5	5		0.02	4,95	

Объект: 137, Минская ТЭЦ-3; вар.исх.д. 9; вар.расч.19; пл.1(h=2м) Масштаб 1:74700

Приложение И на листах 209 ~ 240

Результаты расчетов рассеивания по вертикали с учетом высоты жилых зданий

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 7, ВАРИАНТ 1 Вариант расчета: По высоте жилой застройки

Расчет проведен на зиму

Расчетный модуль: "ОНД-86 с учетом застройки"

Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость	5 м/с
превышения в пределах 5%)	

Параметры источников выбросов

Учет при	№ nn.	Nº uexa	№ ист.	Наименование источника	Вар.	Тип	Высота	Диамет устья (м		Скорость	Темп. ГВС (°С)	Коз		Коорд. 1-ос. (м)	Коорд. У1-ос. (м)	Коорд. X2-ос. (м)	Коорд. У2-ос. (м)	Ширина источ.
расч.							,	301271 (0	(куб.м/с)	1.00 (.50(0,	"	" ^	1 001 ()	11 00. (,	/ C 00. (,	12 00. (111)	(M)
_	0	1	4	Дымовая труба	1	1	100,0	6,0		6,5784	166		1,0	303,0	-374,0	303,0	-374,0	
		Код	B-Ba	Наименование вещества	- 1		Выброс, (Выброс, (т/г)		ето: Ст/Г		Xm		вима: Ст/П		Um	
		01	24	Кадмий и его соединения			0.00014		0,0000000	1	0,00		656,7	4.4	0,00		4,7	
		01	40	Медь и его соединения (в пересч	нете на	ì	0.001000	00	0,0000000	1	0,00		656,7		0,00			
				медь)			*											
		01		Никель оксид			0.129199	97	0,0000000	1	0,00		656,7		0,00			
		01		Ртуть (Ртуть металлическая	я)		0.00015		0,0000000	1	0,00	0 1	656,7		0,00			
		01		Свинец и его соединения			0.003646		0,0000000	1	0,00		656,7		0,00			
		02	28	Хрома трехвалентные соединени	я (в пе	· -	0.001000	00	0,0000000	1	0,00	0 1	656,7	4,4	0,00	0 1695,8	4,7	
				ресчете на хром)								_						
		02	29	Цинк и его соединения (в пересч	ете на		0.000000)0	0,0000000	1	0,00	0 1	656,7	4,4	0,00	0 1 695,8	4,7	
		03	04	цинк)	>		44 00000	00	0.000000		0.00		000		0.00	4 4 60 5 0	4 77	
		03		Азота диоксид (Азот (IV) окс			41.66000		0,0000000	1	0,09		656,7		0,09			
		03		Мышьяк и его соединения Углерод (Сажа)			0.000000		0,0000000	1 1,5	0,00 0,00		656,7 449,6		0,00 0,00			
		03		Утперод (Сажа) Сера диоксид (Ангидрид серни	стый\		142.25000		0,0000000	1,5 1	0,00		656.7		0,00			
		03		Углерод оксид	CIDINI		11.07000		0,0000000	1	0,00		656,7		0,10			
		07		Бенз/а/пирен (3,4-Бензпире	μ)		0.000209		0,0000000	i	0,02		656,7		0,00			
		29		Мазутная зола теплоэлектроста			0.393000		0,0000000	1,5	0,01		449.6		0,02			
_	0			Дымовая труба	1	1		9,6		10,23317			1,0	533,0				0,00
		Код		Наименование вещества			Зыброс, (Выброс, (т/г)		то: Cm/П		Xm		има: Cm/П		Um	0,00
		01		Кадмий и его соединения		•	0.001064	•	0,0000000	1	0,00		494,2		0.00			
		01	40	Медь и его соединения (в пересч	іете на		0.008000		0,0000000	1	0,00		494,2		0.00	•		
				медь)					.,		-,				5,55	, .	-,-	
		01	64	Никель оксид			0.950446	30	0,0000000	1	0,01	0 3	494,2	6	0,01	0 3 565,8	6,3	
		01	83	Ртуть (Ртуть металлическая	7)		0.001083	30	0,0000000	1	0,00		494,2		0,00			
		01		Свинец и его соединения			0.026821	10	0000000,0	1	0,00		494,2		0,00		6,3	
		02	28	Хрома трехвалентные соединени	я (в пе	-	0.010200	00	0,0000000	1	0,00	0 3	494,2	. 6	0,00	0 3 565,8	6,3	
				ресчете на хром)														
		02:	29	Цинк и его соединения (в пересч	ете на		0.034000	00	0,0000000	1	0,00	0 3	494,2	6	0,00	0 3 565,8	6,3	
			- 4	цинк)						_				_				
		03		Азота диоксид (Азот (IV) окси	1Д)	- 2	206.58000		0,0000000	1	0,09		494,2		0,08			
		03: 03:		Мышьяк и его соединения			0.000000		0,0000000	1	0,00		494,2		0,00	•		
		03:		Углерод (Сажа)			4.954000		0,0000000	1,5	0,00		057,5		0,00			
		03:		Сера диоксид (Ангидрид сернис Углерод оксид	31 PIN)		044.3570 53.37000		0,00000000	1 1	0,22 0,00		494,2		0,22			
		07		Утперод оксид Бенз/а/пирен (3,4-Бензпиреі			0.001372		0,0000000	1	0,00		494,2 494,2	. 6	0,00			
		290		Мазутная зола теплоэлектроста			2.887000		0,0000000	1,5	0,03	4 3	057,5	6	0,02 0,02			
	0	1		Дымовая труба	<u>глции</u> 1	1	60,0	7,0										0.00
	U _I	Коді		Дымовая труба Наименование вещества					0 <u>650,6</u> ыброс, (т/г)				1,0 Xm	580,0 Um 3				0,00
		КОД I		Ртуть (Ртуть металлическая	z)		Зыброс, (1 0.000020		ыорос, (тл.) 0,0000000	т ле 1	то: Ст/П 0,00		603,4		има: Ст/П 0,00		Um 8,7	
		030		Азота диоксид (Азот (IV) окси			44.70500		0,0000000	1	0,00		603,4		0,00		8,7	
		033		Углерод оксид	'A/		134.11500		0,0000000	1	0,13		603,4	•	0,13			
		04		Улгерод оксид Метан			67.05800		0,0000000	1	0,02		603,4		0.00			
		070		Бенз/а/пирен (3,4-Бензпирен	0		0.000001		0,0000000	1	0,00		603,4		0,00			
		٠.,		= 3	,		00000	_	-,	•	0,00	- '	500,4	٠, ١	5,00	- 1001,0	٥,,	

+	0	2	3Дымовая труба 1	1 10	0,0 7,	00 338,89	8,80)588	133	1,0	425,0)	-152,0	425,0	-152,0	0,00
		Код в-ва				Выброс, (т/г)	F	Лето:	Cm/ПДК	Xm	Um :	Зима:	Ст/ПДК	Χm	Um	
		0183	Ртуть (Ртуть металлическая)	0.000	00260	0,0000000	1		0,000	1 847,2	5,1		0,000	1 896,3	5,4	
		0301	Азота диоксид (Азот (IV) оксид)	43.32	00000	0,0000000	1		0,082	1 847,2	5,1		0,078	1 896,3	5,4	
		0330	Сера диоксид (Ангидрид сернистый)	5.248	30000	0,0000000	1		0,005	1 847,2	5,1		0,005	1 896,3	5,4	
		0337	Углерод оксид	38.66	40000	0,0000000	1		0,004	1 847,2	5,1		0,003	1 896,3	5,4	
	•	0703	Бенз/а/пирен (3,4-Бензпирен)	0.000	01800	0,0000000	1		0,017	1 847,2	5,1		0,016	1 896,3	5,4	
+	0	2	4 Дымовая труба 1	1 10	0,0 6,	00 71,79	2,53	3905	225	1,0	303,0		-374,0	303,0	-374 <u>,</u> 0	0,00
		Код в-ва		Выбро	oc, (r/c)	Выброс, (т/г)	F	Лето:	Ст/ПДК	Χm	Um :	Зима:	Ст/ПДК	Χm	Um	
		0183	Ртуть (Ртуть металлическая)	0.000	00050	0,0000000	1		0,000	1 389,5	3,5		0,000	1 417,5	3,6	
		0301	Азота диоксид (Азот (IV) оксид)	12.24	90000	0,0000000	1		0,042	1 389,5	3,5		0,040	1 417,5	3,6	
		0330	Сера диоксид (Ангидрид сернистый)		50000	0,0000000	1		0,000	1 389,5	3,5		0,000	1 417,5	3,6	
		0337	Углерод оксид		50000	0,0000000	1		0,000	1 389,5	3,5		0,000	1 417,5	3,6	
		0703	Бенз/а/пирен (3,4-Бензпирен)		00420	0,0000000	<u> </u>		0,007	1 389,5	3,5		0,007	1 417,5	3,6	
+	0	2	5Дымовая труба 1	1 18	0,0 9,	60 440,7	6,08		162	1,0	533,0		-162,0	533,0	-162,0	0,00
		Код в-ва	а Наименование вещества		OC, (r/c)	Выброс, (т/г)	F	Лето:	Ст/ПДК	Xm	Um :	Зима:	Ст/ПДК	Xm	Um	
		0183	Ртуть (Ртуть металлическая)		00310	0000000,0	1		0,000	3 003,8	4,7		0,000	3 082,5	5	
		0301	Азота диоксид (Азот (IV) оксид)		20000	0,0000000	1		0,048	3 003,8	4,7		0,046	3 082,5	5	
		0330	Сера диоксид (Ангидрид сернистый)		50000	0,0000000	1		0,000	3 003,8	4,7		0,000	3 082,5	5	
		0337	Углерод оксид		90000	0,0000000	1		0,000	3 003,8	4,7		0,000	3 082,5	5	
		0703	Бенз/а/пирен (3,4-Бензпирен)		03340	0,0000000	1		0,010	3 003,8	4,7		0,009	3,082,5	9 070 0	0.00
+	0	2	123 Дымовая труба 1			00 836,46	<u> 21,73</u>		110	1,0	580,0		-276,0	580,0	-276,0	_0,00
		Код в-ва			oc, (r/c)	Выброс, (т/г)	F	Лето:	Ст/ПДК	Xm		Зима:	Ст/ПДК	Xm	Um	
		0183	Ртуть (Ртуть металлическая)		00230	0,0000000	1		0,000	1 784,2	9,6		0,000		10,2	
		0301	Азота диоксид (Азот (IV) оксид)		90000	0,0000000	1		0,128	1 784,2	9,6		0,124	1 807,5	10,2 10,2	
		0337	Углерод оксид		470000	0,0000000	1		0,019	1 784,2	9,6		0,019 0,000	1 807,5 1 807,5	•	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.000	00020	0,0000000	1		0,000	1 784,2	9,6		0,000	1 607,5	10,2	

Выбросы источников по веществам

Вещество: 0183 Ртуть (Ртуть металлическая)

№ пл.	Nº uex	№ ист.	Тип	Учет	Выброс (r/c)	F	-	Лето			Зима	
							Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1		0.0001550	1	0,0002	1656,70	4,3844	0,0001	1695,84	4,6520
0	1	5	1	-	0.0010830	1	0,0002	3494,24	6,0080	0,0002	3565,84	6,3263
0	1	123	1	-	0.0000202	1	0,0000	1603,38	8,1379	0,0000	1631,56	8,7327
0	2	3	1	+	0.0000260	1	0,0000	1847,22	5,0588	0,0000	1896,26	5,4356
0	2	4	1	+	0.0000050	1	0,0000	1389,48	3,4661	0,0000	1417,49	3,6261
0	2	5	1	+	0.0000310	1	0,0000	3003,83	4,6805	0,0000	3082,52	4,9814
0	2	123	1	+	0.0000230	1	0,0000	1784,23	9,6133	0,0000	1807,49	10,2041
Итог	0:				0.0000850		0,0001		. :	0,0001		

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето		!	Зима	
					_		Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
Ö	1	4	1	•	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	5	1	_	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	123	1	-	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	4	1	+	12.2490000	1	0,0415	1389,48	3,4661	0,0399	1417,49	3,6261
0	2	5	1	+	81.2120000	1	0,0483	3003,83	4,6805	0,0459	3082,52	4,9814
0	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
Итог	o:				189.1300000		0,3005			0,2884	· · · · · · · · · · · · · · · · · · ·	•

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

№ пл.	N∘ цех	№ ист.	Тип	Учет	Выброс (r/c)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1		142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	_ 5	1	-	1044.3570000	_ 1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	2	3	1	+	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	0.2450000	_ 1	0,0004	1389,48	3,4661	0,0004	1417,49	3,6261
0	2	5	1	+	1.6250000	1	0,0005	3003,83	4,6805	0,0005	3082,52	4,9814
Итог	o:				7.1180000		0,0059			0,0056		

Вещество: 0337 Углерод оксид

№ пл.	Nº цех	Nº ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	11.0700000	1	0,0013	1656,70	4,3844	0,0013	1695,84	4,6520
0	1	5	1	-	53.3700000	1	0,0012	3494,24	6,0080	0,0011	3565,84	
0	1	123	1		134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	
0	2_	3	1	+	38.6640000	1	0,0037	1847,22	5,0588	0,0035	1896,26	5,4356
0_	_2	4	1	+	2.2460000	1	0,0004	1389,48	3,4661	0,0004	1417,49	
0	2	5	1	+	14.8890000	1	0,0004	3003,83	4,6805	0,0004	3082,52	4,9814
0	2	123	1	+	157.0470000	1	0,0192	1784,23	9,6133	0,0186		
Итог	o: <u> </u>				212.8460000		0,0237			0,0229	<u> </u>	

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1_	4	1	-	0.0002090	_ 1	0,0025	1656,70	4,3844	0,0024	1695,84	4.6520
_0	1	5	1	-	0.0013720	1	0,0030	3494,24	6,0080	0,0029	3565,84	6,3263

0	2	123	1	+	0.0000020	1	0,0000	1784,23	9,6133	0,0000	1807,49	10,2041
0	2	5	1	+	0.0003340	1	0,0010	3003,83	4,6805	0,0009	3082,52	4,9814
0	2	4	1	+	0.0000420	1	0,0007	1389,48	3,4661	0,0007	1417,49	3,6261
0	2	3	1	+	0.0001800	1	0,0017	1847,22	5,0588	0,0016	1896,26	5,4356
0	۲	123	1	-	0.0000019	1	0,0000	1603,38	8,1379	0,0000	1631,56	8,7327

Выбросы источников по группам суммации

Группа суммации: 6009

Nº nn.	№ цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
						,		Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/c)
0	1	4	1	-	0301	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	
0	1	4	1	-	0330	142,2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	
0	1	5	1	-	0301	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	5	1	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	1	123	1	-	0301	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	. 8,7327
0	2	3	1	+	0301	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	3	1	+	0330	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	0301	12,2490000	1	0,0415	1389,48	3,4661	0,0399	1417,49	
0	2	4	1	+	0330	0.2450000	1	0,0004	1389,48	3,4661	0,0004	1417,49	3,6261
0	2	5	1	+	0301	81.2120000	1	0,0483	3003,83	4,6805	0,0459	3082,52	4,9814
0	2	5	1	+	0330	1.6250000	1	0,0005	3003,83	4,6805	0,0005	3082,52	4,9814
0	2	123	1	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
Итого	:					196.2480000		0,3064			0,2940		

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	дельно Допус Концентраци		*Поправ. коэф. к ПДК/ОБУ В		ювая центр.
		Тип	Спр. значение	Исп. в расч.]	Учет	Интерп.
0183	Ртуть (Ртуть металлическая)	ПДК м/р	0.0006000	0.0006000	1	Нет	Нет
L	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
1	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да
	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с * 10	0.0000050	0.0000500	1	Да	Да
6009	Группа сумм. (2) 301 330	Группа	-	-	1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

№ поста	Наименование	Координа	ты поста
		х	у
1	ул.Кедышко, 45	-480	5800

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8,2E-5	8,2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013
0337	Углерод оксид	0.257	0.257	0.257	0.257	0.257
0703	Бенз/а/пирен (3,4-Бензпирен)	7.7E-7	7.7E-7	7.7E-7	7.7E-7	7.7E-7
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
2 ул.	Тростенецкая, 4				-4185	

Код в-ва	Наименование вещества		Фоно	вые концент	грации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5

0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
03 30	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
3 ул.	Каховская, 72				-5200	5160

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юr	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301 ·	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
<u>290</u> 4	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
4 ул.	Жилуновича, 3				-730	-6		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1Ë-7		
5ул.	Скорины, 18			1	2044	45		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301	Азота диоксид (Азот (IV) оксид) 0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	Углерод оксид 0.754 0.7	0.754	0.754	0.754	0.754		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
6 ул.	Селицкого, 33				4562	-53		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
7ул.	Тростенецкая, 10Б				-3840	<u>-12-7</u>		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6		
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод окоид	0.871	0.871	0.871	0.871	0.871		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
8пр.	Партизанский, 66 А				-345	-1016		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1.75E-0		

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные точки

Nº	Координаты точки (м)		Высота (м)	Тип точки	Комментарий
	X	Υ Υ	\ /		
14	695,00	820,00	23	застройка	
15	822,00	717,00	19	застройка	
16	1526,10	-61,90	19	застройка	
17	1646,50	-208,60	19	застройка	
18	1892,30	-485,00	26	застройка	
19	1126,00	-937,00	50	застройка	
20	1088,00	-1071,00	50	застройка	

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0.01

Код	Наименование	Сумма Ст/ПДК
0183	Ртуть (Ртуть металлическая)	0.0000564

Результаты расчета по веществам (расчетные точки)

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	•	• •			Тип точки
20	1088	-1071	50	0.50	327	5,00	0.081	0.230	5
19	1126	-937	50	0.49	315	5,00	0.223	0.303	5
18	1892,3	-485	26	0.47	281	5,00	0.193	0.299	5
17	1646,5	-208,6	19	0.44	269	5,00	0.192	0.300	5
16	1526,1	-61,9	19	0.43	261	5,00	0.187	0.300	5
14	695	820	23	0.42	188	5,00	0.163	0.267	5
15	822	717	19	0.40	202	5,00	0.182	0.266	5

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Коорд	Коорд		Концентр.		Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	ТОЧКИ
19	1126	-937	50	0.02	318	5,00	0.011	0.054	5
20	1088	-1071	50	0.02	324	5,00	0.011	0.054	5
14	695	820	23	0.02	195	5,00	0.011	0.053	5
15	822	717	19	0.02	204	5,00	0.011	0.053	5
16	1526,1	-61,9	19	0.02	265	5,00	0.011	0.053	5
17	1646,5	-208,6	19	0.02	272	5,00	0.011	0.054	5
18	1892,3	-485	26	0.02	283	5,00	0.011	0.054	5

Вещество: 0337 Углерод оксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	•	Фон (д. ПДК)		Тип точки
20	1088	-1071	50	0.23	328	5,00	0.193	0.209	5
19	1126	-937	50	0.23	321	5,00	0.195	0.208	5
14	695	820	23	0.21	187	5,00	0.186	0.196	5
18	1892,3	485	26	0.21	280	5,00	0.188	0.196	5
17	1646,5	208,6	19	0.21	267	5,00	0.189	0.198	5
16	1526,1	-61,9	19	0.21	258	5,00	0.189	0.198	5
15	822	717	19	0.20	195	5,00	0.190		5

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

N ₂	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)		Тип точки
20	1088	-1071	50	0.04	326	5,00	0.032	0.034	5
19	1126	-937	50	0.04	320	5,00	0.032	0.034	5
<u>14</u>	695	820	23	0.04	195	5,00	0.031	0.033	5
17	1646,5	-208,6	19	0.04	272	5,00	0.032	0.033	5
16	1526,1	61,9	19	0.04	264	5,00	0.032	0.033	5
15	822	717	19	0.04	204	5,00	0.031	0.033	5
18	1892,3	-485	26	0.04	282	5,00	0.032	0.033	5

Вещество: 6009 Группа сумм. (2) 301 330

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
20	1088	-1071	50	0.49	327	5,00	0.057	0.284	5
19	1126	-937	50	0.45	321	5,00	0.057	0.285	5
18	1892,3	-485	26	0.40	281	5,00	0.120	0.352	5
17	1646,5	-208,6	19	0.39	270		0.135	0.353	
14	695	820	23	0.38	188		0.123	0.320	<u>5</u>
16	1526,1	-61,9	19	0.37	261	5,00	0.126	0.354	5
15	822	717	19	0.36	203	1,90	0.303	0.360	5

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 6, ВАРИАНТ 2 Вариант расчета: По высоте жилой застройки

Расчет проведен на зиму

Расчетный модуль: "ОНД-86 с учетом застройки"

Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость	5 м/с
превышения в пределах 5%)	

Параметры источников выбросов

Учет при расч.	№ mл.	№ цеха	№ ист	. Наименование источника	Вар.	Тип		Диаметр устья (м)	Объем ГВС (куб.м/с)	Скорость ГВС (м/с)	Темп. ГВС (°C)	Коэф рел.		Коорд. 1-ос. (м)	Коорд. Ү1-ос. (м	Koop,		Коорд. Ү2-ос. (м)	Ширина источ.
-	0	1		Дымовая труба	1	1	100,0	6,00		6,5784	166	1,	^	303,0	274	0 30	3,0	274.0	(M)
		Код	в-ва	Наименование вещества	•		Зыброс, (іброс, (т/г)		 το: Cm/Π		Xm		-374 има: Ст/			-374,0 Um	0,00
			24	Кадмий и его соединения			0.00014		,00000000	1	0,00		356,7		има. Спи 0,0			4,7	
		01	40	Медь и его соединения (в перес			0.00100		,0000000	1	0,00		556.7		0,0			4,7	
				медь)					,	-	-1-0	•		79.2	0,0	.00 100	,,,,	7,1	
		01		Никель оксид			0.12919	97 0	0000000	1	0,00	8 16	556,7	4.4	0,0	07 169	5.8	4,7	
		01		Ртуть (Ртуть металлическа:	ਸ)		0.00015	50 0	,0000000	1	0,00		556,7		0,0			4,7	
		01		Свинец и его соединения			0.003640		0000000	1	0,00		356,7		0.0			4,7	
		02	28	Хрома трехвалентные соединени	я (в пе	-	0.001000	00 0	,0000000	1	0,00		356,7		0.0		5,8	4,7	
			20	ресчете на хром)											•		•	•	
		02	29	Цинк и его соединения (в пересч	ете на		0.000000	00 0	0000000	1	0,00	16	556,7	4,4	0,0	00 1 69	5,8	4,7	
		03	04	цинк)													-		
		03		Азота диоксид (Азот (IV) окс			41.66000		0000000	1	0,099		556,7	•	0,0			4,7	
		03:		Мышьяк и его соединения			0.000000		0000000	1_	0;00		56,7		0,0			4,7	
		03		Углерод (Сажа)	··················		0.673000	-	0000000	1,5	0,004		49,6		0,0			4,7	
		03	37	Сера диоксид (Ангидрид сернис Углерод оксид	этыи)		142.25000		0000000	1	0,169		556,7		0,1			4,7	
		07		Утперод оксид Бенз/а/пирен (3,4-Бензпирен	л		11.07000 0.000209		0000000	1	0,00		56,7	4,4	0,0			4,7	
				Мазутная зола теплоэлектроста	7 <i>)</i> Nationia		0.393000		0000000	1	0,02		56,7	4,4	0,0			4,7	
	0	2904 1 5		Дымовая труба	<u>глции</u> 1	1	180.0		0000000	1,5	0,017		49,6		0,0			4,7	
L	<u> </u>	Коді		Наименование вещества				9,60		10,23317	188,8	1,0		533,0			3,0	-162,0	0,00
		012		Кадмий и его соединения			выброс, (г 0.001064		брос, (т/г) 0000000	F Лет			(m		има: Ст/			Um	
		014		Медь и его соединения (в пересч	ото из		0.008000		0000000	1 1	0,000		94,2	6	0,0			6,3	
				медь)	CIC na		0.000000	ro u,	0000000	•	0,000	34	94,2	6	0,0	00 3 56	5,8	6,3	
		016	34	Никель оксид			0.950446	a a	0000000	1	0,010	3 4	94.2	6	0.0	10 3 56	= 0	£ 2	
		018	33	Ртуть (Ртуть металлическая)		0.001083		0000000	i	0.000		94.2	6	0,0		•	6,3	
		018	34	Свинец и его соединения	,		0.026821		0000000	i	0,000		94,2	6	0,0			6,3	
		022	28	Хрома трехвалентные соединения	я (в пе-		0.010200		0000000	i	0,000		94,2	6	0,0			6,3	
				ресчете на хром)				-,		-	0,000		·,_	•	0,0	00 550	J ,U	0,5	
		022	29	Цинк и его соединения (в пересч	ете на		0.034000	0 0,	0000000	1	0,000	34	94,2	6	0,0	00 3 56	58	6,3	
				цинк)							-,		,-	•			0,0	0,0	
		030		Азота диоксид (Азот (IV) окси	д)	2	06.58000	00 0,	0000000	1	0,091	34	94.2	6	0,0	87 3 56	5.8	6.3	
		032		Мышьяк и его соединения			0.000000		0000000	1	0,000	34	94,2	6	0,0				
		032		Углерод (Сажа)			4.954000		0000000	1,5	0,005		57,5	6	0,0			6.3	
		033		Сера диоксид (Ангидрид сернис	тый))44.3570(0000000	1	0,229		94,2	6	0,2			6,3	
		033		Углерод оксид			3.370000		0000000	1	0,001		94,2	6	0,0	01 3 56	5,8	6,3	
		070 290		Бенз/а/пирен (3,4-Бензпирен			0.001372		0000000	1	0,030		94,2	6	0,0			6,3	
		1		Мазутная зола теплоэлектроста	нции		2.887000		0000000	1,5	0,024		57,5	6	0,0			6,3	
	0		123	Дымовая труба	1	<u>1</u>	60,0	7,00	650,6	16,9055	103	1,0)	580,0	<u>-2</u> 76,	580	0,0	-276,0	0,00
		Код в		Наименование вещества			ыброс, (г		рос, (т/г)	F Лет			m		има: Cm/I	1ДК Xn	1	Um	
		018		Ртуть (Ртуть металлическая			0.000020		0000000	1	0,000		03,4	8,1	0,0			8,7	
		030 033		Азота диоксид (Азот (IV) окси	Q)		4.705000		0000000	1	0,135		03,4	8,1	0,1			8,7	
		033 041		Углерод оксид			34.11500		0000000	1	0,020		03,4	8,1	0,0		1,6	8,7	
				Метан Бенз/а/пирек /3 4 Боизпирои	`		7.058000	- •	0000000	1	0,001		03,4	8,1	0,0			8,7	
		0703		Бенз/а/пирен (3,4-Бензпирен	,	ļ	0.000001	9 0,0	0000000	1	0,000	1 6	03,4	8,1	0,0	00 163	1,6	8,7	

_+												
	0 2	3 Дымовая труба 1	1 100,0	7,00 338,89	8,80588	133	1,0	425,0	-152,0	425,0	-152,0	0,0
	Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:				: Cm/ПДК	Xm	Um	0,0
	0183	Ртуть (Ртуть металлическая)	0.0000260	0,0000000	1	0,000	1 847,2		0,000	1 896,3		
	0301	Азота диоксид (Азот (IV) оксид)	43.3200000	0,0000000	i	0,082	1 847 2		0,078	1 896,3		
	0330	Сера диоксид (Ангидрид сернистый)	5.2480000	0,0000000	i	0,005	1 847,2	5,1	0,005	1 896,3		
	0337	Углерод оксид	38.6640000	0,0000000	i	0,004	1 847,2		0,003	1 896,3		
	0703	Бенз/а/пирен (3,4-Бензпирен)	0.0001800	0,0000000	i	0,017	1 847.2		0,003	1 896,3		
_ +	0 2	4 Дымовая труба 1	1 100,0	6,00 76,65	2,71094	225	1,0	303,0	-374,0	303,0		
	Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:							0,0
	0124	Кадмий и его соединения	0.0001530	0,0000000	1 71610.	0,000	1 409,1	Um Зима:			Um	
	0140	Медь и его соединения (в пересчете на	0.0011040	0,0000000	i	0,000			0,000	1 437,3		
		медь)	5.5511516	0,000000	•	0,000	1 409,1	3 ,5	0,000	1 437,3	3,7	
	0164	Никель оксид	0.1369270	0,0000000	1	0.011	1 409,1	2.5	0.044	4 407 0	0.7	
	0183	Ртуть (Ртуть металлическая)	0.0001530	0,0000000	4	0.000	•	3,5	0,011	1 437,3		
	0184	Свинец и его соединения	0.0038640	0,0000000	i	0,003	1 409,1	3,5	0,000	1 437,3		
	0228	Хрома трехвалентные соединения (в пе-	0.0014720	0,0000000	i	0,000	1 409,1 1 409,1	3,5	0,003	1 437,3		
		ресчете на хром)	0.00	0,000000		0,000	1 409,1	3,5	0,000	1 437,3	3,7	
	0229	Цинк и его соединения (в пересчете на	0.0049680	0,0000000	1	0,000	1 409,1	3,5	0.000	1 427 2	2.7	
		цинк)		-,	•	0,000	1 403,1	3,3	0,000	1 437,3	3,7	
	0301	Азота диоксид (Азот (IV) оксид)	14.8600000	0,0000000	1	0,049	1 409,1	3,5	0,047	1 437,3	3,7	
	0325	Мышьяк и его соединения	0.0000610	0,0000000	i	0,000	1 409,1	3,5	0,000	1 437,3		
	0328	Углерод (Сажа)	0.7140000	0,0000000	1,5	0,006	1 233	3,5	0,006	1 257,7	3,7 3,7	
	0330	Сера диоксид (Ангидрид сернистый)	72.1860000	0,0000000	1	0,119	1 409,1	3,5	0,000	1 437,7	3,7 3,7	
	0337	Углерод оксид	6.3690000	0,0000000	1	0,001	1 409,1	3,5	0,001	1 437,3		
	0703	Бенз/а/пирен (3,4-Бензпирен)	0.0002690	0,0000000	i	0.044	1 409,1	3,5 3,5	0,043	1 437,3	3,7	
	2902	Твердые частицы	1.2190000	0,0000000	3	0,010	704,6	3,5	0,043	718,7	3, <i>7</i> 3,7	
	2904	Мазутная зола теплоэлектростанций	0.3560000	0,0000000	1,5	0,022	1 233	3,5	0,010	1 257,7	3,7	
+	0 2	5Дымовая труба 1	1 180,0	9,60 479,73	6,62773	161	1,0	533,0	-162,0	533,0	-162,0	0,0
	Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)		Ст/ПДК	Xm	Um Зима:		Xm	-102,01 Um	0,0
	0124	Кадмий и его соединения	0.0010610	0,0000000	1	0,000	3 062,8	4,8	0,000	3 142,4	5,1	
	0140	Медь и его соединения (в пересчете на	0.0076400	0,0000000	1	0,000	3 062,8	4,8	0,000	3 142,4		
		медь)		•	-	0,000	0 002,0	1,0	0,000	0 172,7	J, 1	
	0164	Никель оксид	0.9475740	0,0000000	1	0,014	3 062,8	4,8	0,013	3 142,4	5.1	
	0183	Ртуть (Ртуть металлическая)	0.0010610	0.0000000	i	0,000	3 062,8	4,8	0,000		5,1 5,1	
	0184	Свинец и его соединения	0.0267400	0,0000000	1	0,004	3 062,8	4,8	0,004	3 142,4	5,1	
	0228	Хрома трехвалентные соединения (в пе-	0.0101870	0,0000000	1	0,000	3 062,8	4,8	0,000		5,1	
		ресчете на хром)				-,		.,0	0,000	0 172,7	٥, ١	
	0229	Цинк и его соединения (в пересчете на					3 062,8	4,8	0,000	3 142,4	5.1	
			0.0343800	0,0000000	1	0.000				·, .	0,1	
	0004	цинк)		0,0000000	1	0,000	0 002,0	4,0				
	0301	цинк) Азота диоксид (Азот (IV) оксид)	155.2680000	0,0000000	1 1	0,000		•		3 142.4	5.1	
	0325	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения	155.2680000 0.0004240			·	3 062,8	4,8	0,084		5,1 5.1	
	0325 0328	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа)	155.2680000 0.0004240 4.9380000	0,0000000	1	0,089		4,8 4,8	0,084 0,000	3 142 4	5,1	
	0325 0328 0330	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый)	155.2680000 0.0004240 4.9380000 499.5470000	0,0000000 0,000000	1 1	0,089 0,000	3 062,8 3 062,8	4,8 4,8 4,8	0,084 0,000 0,007	3 142,4 2 749,6	5,1 5,1	
	0325 0328 0330 0337	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид	155.2680000 0.0004240 4.9380000	0,0000000 0,000000 0,000000	1 1 1,5	0,089 0,000 0,007	3 062,8 3 062,8 2 680 3 062,8	4,8 4,8 4,8 4,8	0,084 0,000 0,007 0,136	3 142,4 2 749,6 3 142,4	5,1 5,1 5,1	
	0325 0328 0330 0337 0703	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен)	155.2680000 0.0004240 4.9380000 499.5470000 44.0720000 0.0016860	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1 1,5	0,089 0,000 0,007 0,143 0,001	3 062,8 3 062,8 2 680 3 062,8 3 062,8	4,8 4,8 4,8 4,8 4,8	0,084 0,000 0,007 0,136 0,001	3 142,4 2 749,6 3 142,4 3 142,4	5,1 5,1 5,1 5,1	
	0325 0328 0330 0337 0703 2902	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен) Твердые частицы	155.2680000 0.0004240 4.9380000 499.5470000 44.0720000 0.0016860 8.4350000	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1 1,5 1	0,089 0,000 0,007 0,143 0,001 0,048	3 062,8 3 062,8 2 680 3 062,8 3 062,8 3 062,8	4,8 4,8 4,8 4,8 4,8 4,8	0,084 0,000 0,007 0,136 0,001 0,046	3 142,4 2 749,6 3 142,4 3 142,4 3 142,4	5,1 5,1 5,1 5,1 5,1	
	0325 0328 0330 0337 0703 2902 2904	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен) Твердые частицы Мазутная зола теплоэлектростанций	155.2680000 0.0004240 4.9380000 499.5470000 0.0016860 8.4350000 2.4660000	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1 1,5 1 1	0,089 0,000 0,007 0,143 0,001 0,048	3 062,8 3 062,8 2 680 3 062,8 3 062,8 3 062,8 1 531,4	4,8 4,8 4,8 4,8 4,8 4,8 4,8	0,084 0,000 0,007 0,136 0,001 0,046 0,011	3 142,4 2 749,6 3 142,4 3 142,4 3 142,4 1 571,2	5,1 5,1 5,1 5,1 5,1 5,1	
+	0325 0328 0330 0337 0703 2902 2904 0 2 1	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен) Твердые частицы Мазутная зола теплоэлектростанций 23 Дымовая труба	155.2680000 0.0004240 4.9380000 499.5470000 44.0720000 0.0016860 8.4350000 2.4660000	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1,5 1 1 1 3	0,089 0,000 0,007 0,143 0,001 0,048 0,012 0,026	3 062,8 3 062,8 2 680 3 062,8 3 062,8 3 062,8 1 531,4 2 680	4,8 4,8 4,8 4,8 4,8 4,8 4,8	0,084 0,000 0,007 0,136 0,001 0,046 0,011 0,025	3 142,4 2 749,6 3 142,4 3 142,4 3 142,4 1 571,2 2 749,6	5,1 5,1 5,1 5,1 5,1 5,1 5,1	0.00
+]	0325 0328 0330 0337 0703 2902 2904 0 2 1 Код в-ва	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен) Твердые частицы Мазутная зола теплоэлектростанций 23 Дымовая труба 1 Наименование вещества	155.2680000 0.0004240 4.9380000 499.5470000 44.0720000 0.0016860 8.4350000 2.4660000	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1,5 1 1 1 3 1,5 21,73498	0,089 0,000 0,007 0,143 0,001 0,048 0,012 0,026	3 062,8 3 062,8 2 680 3 062,8 3 062,8 3 062,8 1 531,4 2 680	4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 580,0	0,084 0,000 0,007 0,136 0,001 0,046 0,011 0,025	3 142,4 2 749,6 3 142,4 3 142,4 3 142,4 1 571,2 2 749,6 580,0	5,1 5,1 5,1 5,1 5,1 5,1 5,1 -276,0	0,0
+]	0325 0328 0330 0337 0703 2902 2904 0 2 1 Код в-ва 0183	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен) Твердые частицы Мазутная зола теплоэлектростанций 23 Дымовая труба Наименование вещества Ртуть (Ртуть металлическая)	155.2680000 0.0004240 4.9380000 499.5470000 0.0016860 8.4350000 2.4660000	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1,5 1 1 1 3 1,5 21,73498	0,089 0,000 0,007 0,143 0,001 0,048 0,012 0,026 110	3 062,8 3 062,8 2 680 3 062,8 3 062,8 3 062,8 1 531,4 2 680 1,0	4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 0 580,0	0,084 0,000 0,007 0,136 0,001 0,046 0,011 0,025 -276,0 Ст/ПДК	3 142,4 2 749,6 3 142,4 3 142,4 1 571,2 2 749,6 580,0 Xm	5,1 5,1 5,1 5,1 5,1 5,1 5,1 -276,0	0,0
+	0325 0328 0330 0337 0703 2902 2904 0 2 1: Код в-ва 0183 0301	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен) Твердые частицы Мазутная зола теплоэлектростанций 23 Дымовая труба Наименование вещества Ртуть (Ртуть метаплическая) Азота диоксид (Азот (IV) оксид)	155.2680000 0.0004240 4.9380000 499.5470000 0.0016860 8.4350000 2.4660000 1 60,0 Bыброс, (r/c) 0.0000230 52.3490000	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1,5 1 1 1 3 1,5 21,73498	0,089 0,000 0,007 0,143 0,001 0,048 0,012 0,026 110 Ст/ПДК 0,000	3 062,8 3 062,8 2 680 3 062,8 3 062,8 3 062,8 1 531,4 2 680 1,0 Xm 1 784,2	4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,084 0,000 0,007 0,136 0,001 0,046 0,011 0,025 -276,0 Ст/ПДК 0,000	3 142,4 2 749,6 3 142,4 3 142,4 3 142,4 1 571,2 2 749,6 580,0 Xm 1 807,5	5,1 5,1 5,1 5,1 5,1 5,1 5,1 -276,0 Um 10,2	0,0
+	0325 0328 0330 0337 0703 2902 2904 0 2 1 Код в-ва 0183	цинк) Азота диоксид (Азот (IV) оксид) Мышьяк и его соединения Углерод (Сажа) Сера диоксид (Ангидрид сернистый) Углерод оксид Бенз/а/пирен (3,4-Бензпирен) Твердые частицы Мазутная зола теплоэлектростанций 23 Дымовая труба Наименование вещества Ртуть (Ртуть металлическая)	155.2680000 0.0004240 4.9380000 499.5470000 0.0016860 8.4350000 2.4660000 1 60,0 Выброс, (г/с) 0.0000230	0,0000000 0,0000000 0,0000000 0,0000000 0,000000	1 1,5 1 1 1 3 1,5 21,73498	0,089 0,000 0,007 0,143 0,001 0,048 0,012 0,026 110 Cm/ПДК 0,000 0,128	3 062,8 3 062,8 2 680 3 062,8 3 062,8 3 062,8 1 531,4 2 680 1,0	4,8 4,8 4,8 4,8 4,8 4,8 4,8 4,8 580,0 Um Зима: 9,6	0,084 0,000 0,007 0,136 0,001 0,046 0,011 0,025 -276,0 Cm/∏ДK 0,000 0,124	3 142,4 2 749,6 3 142,4 3 142,4 1 571,2 2 749,6 580,0 Xm	5,1 5,1 5,1 5,1 5,1 5,1 5,1 -276,0 Um 10,2 10,2	0,00

Выбросы источников по веществам

Вещество: 0124 Кадмий и его соединения

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F	<u>·-</u>	Лето			Зима	
					·		Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1_	_	0.0001450	_ 1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	1	5	1	-	0.0010640	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	_2	4	1	+	0.0001530	1	0,0000	1409,11	3,5465	0,0000	1437,33	3,7100
0	2	5	1	+	0.0010610	1	0,0001	3062,80	4,8176	0,0000	3142,41	5,1281
Итог	0:			_	0.0012140		0,0001			0,0001		

Вещество: 0140 Медь и его соединения (в пересчете на медь)

№ пл.	Иех Цех	№ ист.	Тиπ	Учет	Выброс (г/с)	F	Лето				Зима	
							Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	_ 4	1	-	0.0010000	1	0,0002	1656,70	4,3844	0,0002	1695,84	4,6520
0_	_1	5	_1.	, -	0.0080000	1	0,0003	3494,24	6,0080	0,0003	3565,84	6,3263
_0	2	4	1	+	0.0011040	_ 1	0,0003	1409,11	3,5465	0,0003	1437,33	
0_	2	5	_ 1	+	0.0076400	1	0,0004	3062,80	4,8176	0,0003	3142,41	5,1281
Итог	o:				0.0087440		0,0007			0,0006	<u> </u>	

Вещество: 0164 Никель оксид

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (r/c)	F		Лето		-	Зима	
							Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1_	_ 4	1	-	0.1291997	1	0,0077	1656,70	4,3844	0,0073	1695,84	4.6520
0	1	5	_ 1		0.9504460	1	0,0104	3494,24	6,0080	0,0100	3565,84	
0	2	4	1	+	0.1369270	1	0,0113	1409,11	3,5465			
0	2	5	1	+	0.9475740	1	0,0135	3062,80	4,8176		3142,41	
Итог	o:				1.0845010		0,0248			0,0237		,,,_,,

Вещество: 0183 Ртуть (Ртуть металлическая)

NI-							· · · y · · · ·		JIJIN TECKA	<u>^</u>		
Nº	Nº	Nº	INU	Учет	Выброс	F		Лето	•		Зима	_
пл.	цех	ист.			(r/c)	'					3 7711114	
			ļ				Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1_	_4	1		0.0001550	1	0,0002	1656,70	4,3844	0,0001	1695,84	
0	1	5	1	-	0.0010830	1	0,0002	3494,24	6,0080	0,0002	3565,84	
0_	1	123	1_		0.0000202	1	0,0000	1603,38	8,1379	0,0000		
0	2	3_	_1	+	0.0000260	_1	0,0000	1847,22	5,0588	0,0000	<i>_</i> _	
0_	2	4	1_	+	0.0001530	1	0,0002	1409,11	3,5465	0,0002	_	
_0	2	5	1	+	0.0010610	1	0,0003	3062,80	4,8176			
0_	2	123	1	+	0.0000230	1	0,0000	1784,23				
Итог	o:		_		0.0012630		0,0005			0,0005		

Вещество: 0184 Свинец и его соединения

№ пл.	Nº цех	№ ист.		Учет	Выброс (г/с)	F		Лето	единения		Зима	
							Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
	1	4	1		0.0036460	1	0,0022	1656,70	4,3844	0,0021		
0	1_	_ 5	1		0.0268210	1	0,0029	3494,24	6,0080	0.0028	3565,84	
0	2	4	1_	+	0.0038640	1	0,0032	1409,11	3,5465		<u> </u>	
0	2	_ 5	1	+	0.0267400	1	0,0038	3062,80				
Итог	D:				0.0306040	·	0,0070			0,0067	,	<u> </u>

Вещество: 0228 Хрома трехвалентные соединения (в пересчете на хром)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (r/c)	F		Лето	<u> \</u>	1010 114	Зима	
							Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1_		0.0010000	_	0,0001	1656,70	4,3844	0,0001	1695,84	4.6520
0	_1_	5	_1_		0.0102000	_ 1	0,0001	3494,24	6,0080	0,0001	3565,84	6,3263
0	_2_	4	1	+	0.0014720	_ 1	0,0001	1409,11	3,5465	0.0001	1437,33	

0	2	5	1	+	0.0101870	1	0,0001	3062,80	4,8176	0.0001	3142,41	5,1281
Итого	<u>o:</u>				0.0116590		0,0003			0,0003		<u>,,</u>

Вещество: 0229 Цинк и его соединения (в пересчете на цинк)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (r/c)	F	ОСОСОДИ	Лето		<u> </u>	Зима	
<u> </u>	_						Ст/ПДК	Xm	Um.(м/с)	Ст/ПДК	Xm	Um (м/c)
0	1	4	1		0.00000e0	1	0,0000	1656,70	4,3844	0.0000		
0	1	5	1_	-	0.0340000	1	0,0000	3494,24	6,0080			
0	2	4_	1_	+	0.0049680	1	0,0000	1409,11		-,	1437,33	
0_	2	5	1	+	0.0343800	1	0,0000	3062,80			3142,41	
Итого	- 				0.0393480		0,000			0,0000	0172,71	0,1201

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

№ пл.	Nº ц е х	№ ист.	Тип	Учет	Выброс (r/c)	F		Лето	- (11) Ono		Зима	
					<u> </u>		Cm/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0_		4_	1_	-	41.6600000		0,0988	1656,70	4,3844	0,0944	1695,84	
0	1	5	_1		206.5800000	1	0,0906	3494,24				
0_	1	123	1		44.7050000	1	0,1347	1603,38			1631,56	
0	2	_3	1	+	43.3200000	1	0,0824	1847,22			1896,26	
0_	2	4	1	+ 7	14.8600000	_1	0,0490	1409,11		,	1437,33	
0	2	5	1	+	155.2680000	1	0,0888	3062,80	-,	0,0844	3142.41	
0	2	123	1	+	52.3490000	_	0,1282	1784,23				-1:
Итого							0,3484	1104,20	0,0100	0,3341	1007,49	10,2041

Вещество: 0325 Мышьяк и его соединения

Ν Ω.	Nº цех	№ ист.	Тил	Учет	Выброс (г/с)	F		Лето	<u> тединени</u>	,	Зима	
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	_4_	_ T		0.000000e0		0,0000	1656,70	4,3844	0,0000		
0	1	_5	1_	-	0.000000e0	1	0,0000	3494,24			3565,84	,
0	2	<u> 4 </u>	1_	+	0.0000610	1	0.0000	1409,11		0,0000		
0_	2_	<u>5</u>	1	+	0.0004240	1	0,0000	3062,80			3142,41	
Итог	ого:				0.0004850		0,0000			0,0000	<u> </u>	0,1201

Вещество: 0328 Углерод (Сажа)

№ пл.	Иех Цех	№ ист.		Учет	Выброс (r/c)	F		Лето —			Зима	
<u> </u>							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/c)
0	1	4	_1_		0.6730000			1449,61	4,3844	0,0038		
0	1_1_	5	1		4.9540000	1,5	0.0054	3057.46			3120,11	.,
0	2	_4_	11	+	0.7140000	1.5	0.0059	1232,97		0,0057	1257,66	
_0	2	5	1	+	4.9380000			2679.95			2749.61	
Итог	- 1 - 1 0 1 1 1				5.6520000		0,0129	2070,00	4,0170	0,0007		5,1281

Вещество: 0330 Сера диоксид (Ангилрил сервистый)

					CO180. 0000		<u>ра диокси, </u>	ц (мнгидр	ид серни	(СТЫИ)		
№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
<u> </u>				ļ			Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	_1_	4	1		142.2500000	1	0,1688	1656,70	4,3844	0.1612		
0	1_	5	<u> </u>	-	1044.3570000	1	0,2289	3494.24				
0	_2	3	1	+	5.2480000	1	0,0050	1847,22			1896.26	
0	2	4	1	+	72.1860000	1	0,1190					
0	2	-	-					1409,11	3,5465		1437,33	3,7100
							0,1428	3062,80	4,8176	0,1358	3142,41	5,1281
Итого	<u>): </u>				576.9810000		0,2668			0,2549		-11201

Вещество: 0337 Углерол оксил

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F	71	лерод оі Лето	ксид		Зима	÷
							Ст/ПДК	Xm	Um (M/c)	Cm/ПДК	Xm	Um (м/с)
10	1	4	_ 1		11.0700000	_1	0,0013	1656.70				
_ 0_	_1_	_ 5	1		53.3700000	1	0,0012	3494,24				

Итого	ого:				246.1520000		0,0252			0,0243		_
0	2	123	_1_	+	157.0470000	1	0,0192	1784,23	9,6133	0,0186	1807,49	10,2041
0	2	_5	1	+	44.0720000	1	0,0013	3062,80	4,8176	0,0012	3142,41	5,1281
0	2	4	1	+	6.3690000	1	0,0011	1409,11	3,5465	0,0010	1437,33	3,7100
_0	2	3	1	+	38.6640000	1	0,0037	1847,22	5,0588	0,0035	1896,26	5,4356
0	1	123	1	-	134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	8,7327

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
					(y		Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
.0	1	4	1	-	0.0002090	1	0,0025	1656,70	4,3844	0,0024	1695,84	4,6520
0	1	5	1	-	0.0013720	1	0,0030	3494,24	6,0080	0,0029	3565,84	6,3263
0	1	123	1		0.0000019	1	0,0000	1603,38	8,1379	0,0000	1631,56	8,7327
0	2	3	1	+	0.0001800	1	0,0017	1847,22	5,0588	0,0016	1896,26	5,4356
. 0	2	4	1	+	0.0002690	1	0,0044	1409,11	3,5465	0,0043	1437,33	
0	2	5	1	+	0.0016860	1	0,0048	3062,80	4,8176	0,0046	3142,41	
0	2	123	1	+	0.0000020	1	0,0000	1784,23	9,6133	0,0000	1807,49	
Итог							0,0110		<u> </u>	0,0105		

Вещество: 2902 Твердые частицы

Nº nn.	№ цех	Nº NCT.	Тип	Учет	Выброс (r/c)	F		Лето			Зима	· -
							Cm/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
_ 0	2	4	1_	+	1.2190000	3	0,0100	704,56	3,5465	0,0097	718,66	3,7100
0	2	5	1	+	8.4350000	3	0,0121	1531,40	4,8176	0,0115	1571.21	5,1281
Итог					9.6540000		0,0221			0,0211		<u> </u>

Вещество: 2904 Мазутная зола теплоэлектростанций

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето	21011 2001	шпции	Зима	''
				_			Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1		0.3930000	1,5	0,0175	1449,61	4,3844	0,0167	1483,86	4,6520
0	1	5	_ 1		2.8870000	1,5	0,0237	3057,46	6,0080	0,0228	3120,11	
0	2_	_ 4	1	+	0.3560000	1,5	0,0220	1232,97	3,5465			
0	2	5	1	+	2.4660000	1,5	0,0264	2679,95	4,8176		2749.61	
Итог	ого:				2.8220000		0,0485		<u> </u>	0,0463		_ =,

Выбросы источников по группам суммации

Группа суммации: 6009

								Cymmaun	71. UUUU				
№ пл.	Иех Цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	" -
	_							Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (м/c)
0_	1	4	1	-	0301	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	4	1	-	0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	5	1_		0301	206.5800000	1	0,0906	3494,24	6,0080	0.0870	3565,84	6,3263
0	1	_5	1	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	
0	1	_123	1	-	0301	44.7050000	1	0,1347	1603,38		0,1297	1631.56	
0	2	3	11	+	0301	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	
0_	_2	3	1	+	0330	5.2480000	1	0,0050	1847,22	5,0588	0.0047	1896,26	5,4356
0	2	4	1	+	0301	14.8600000	1	0,0490	1409,11	3,5465	0,0471	1437,33	
_ 0	_2_	4	1	+	0330	72.1860000	1	0,1190	1409.11	3,5465	0,1144	1437,33	
0	_2	5	1	+	0301	155.2680000	1	0,0888	3062,80	4,8176	0.0844	3142,41	5,1281
0	2	5_	1	+	0330	499.5470000	1	0,1428	3062,80	4,8176	0,1358		5,1281
0	_ 2	123	1	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	
Итого	<u>: </u>					842.7780000		0,6152			0,5890	.501,40	10,6071

Группа суммации: 6030

№ пл.	№ цех	ИСТ.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
			_					Ст/ПДК	Xm	Um (M/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1		0184	0.0036460	1	0,0022	1656,70	4,3844	0,0021	1695,84	4,6520
0	1	_4_	1_		0325	0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695.84	4,6520
0	1	5	1		0184	0.0268210	1	0,0029	3494,24	6,0080	0,0028	3565.84	6,3263
0	1_	5	1	-	0325	0.000000e0	1	0,0000	3494.24	6.0080	0.0000	3565,84	6,3263
0	2	4	1_	+	0184	0.0038640	1	0,0032	1409,11	3,5465	0,0031	1437,33	

0	2	4	1	+	0325	0.0000610	. 1	0,0000	1409,11	3,5465	0,0000	1437,33	3,7100
0	2	5	1	+	0184	0.0267400	1	0,0038	3062,80	4,8176	0.0036	3142.41	5,1281
0	2	5	_1	+	0325	0.0004240	_ 1	0,0000	3062,80	4,8176	0,0000	3142.41	5,1281
Итого):					0.0310890		0,0070			0.0067		

Группа суммации: 6034

№ пл.	Nº цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
		_						Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (M/c)
0	1_	4	1_1_	-	0184	0.0036460	1	0,0022	1656,70	4,3844	0,0021	1695.84	
0	1	4	1_1_	-	0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695.84	
0	1	5	1_		0184	0.0268210	1	0,0029	3494,24	6,0080	0.0028	3565.84	.,
_ 0	1	5	1_		0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565.84	
0_	_2	3_	1	_ +	0330	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896.26	
0	2	4	_ 1	+	0184	0.0038640		0,0032	1409,11	3,5465	0.0031	1437,33	
0	2	4	1	+	0330	72.1860000	1	0,1190	1409,11	3,5465	0,1144	1437,33	
0	2	5_	_ 1	+	0184	0.0267400	1	0,0038	3062,80	4.8176	0,0036	3142,41	5,1281
0	_2	_ 5 _	_1_	+	0330	499.5470000	1	0,1428	3062,80		0,1358	3142,41	5,1281
<u>Итого</u>	<u>:</u>					577.0116040		0,2738		1	0,2616	0172,411	0,1201

Группа суммации: 6204

№ nn.	цех	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F	ушинаци	Лето			Зима	
								Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (M/c)
<u> </u>	1 1	4_		-	0301	41.6600000		0,0988	1656,70	4,3844	0,0944	1695,84	
<u> </u>	1	_4_		-	0330	142.2500000		0,1688	1656,70	4,3844	0,1612	1695,84	
<u> </u>	1	4		-	2904	0.3930000	1,5	0,0175	1449,61	4,3844	0,0167	1483,86	
<u> </u>	1 1	_ 5	_1_	-	0301	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	
_ 0	1	_5	1	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	
0	1	5	1	-	2904	2.8870000	1,5	0,0237	3057,46	6,0080	0,0228	3120,11	6,3263
0_	<u> </u>	123	1	-	0301	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	0301	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
Ŏ	2	3	1	+	0330	5.2480000	1	0,0050	1847,22	5,0588	0.0047	1896,26	
0	2	4	1	+	0301	14.8600000	1	0,0490	1409,11	3,5465	0.0471	1437,33	
0	_2	_4_	1	+	0330	72.1860000	1	0,1190	1409,11	3,5465	0,1144	1437,33	3,7100
0_	2	4_	_ 1	_+	2904	0.3560000	1,5	0,0220	1232,97	3,5465	0,0212	1257,66	3,7100
0	2	5_	1	+	0301	<u> 155.26800</u> 00)	1	0,0888	3062,80	4,8176	0,0844	3142,41	5,1281
0	2	5	_ 1	_+_	0330	499.5470000	1	0,1428	3062,80	4,8176	0.1358	3142,41	5,1281
0	2	5	1	+	2904	2.4660000	1,5	0,0264	2679,95	4,8176	0,0251	2749,61	5,1281
0	_ 2 _	_123_	_1_	_+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
<u> 1того</u>	<u>: </u>					845.6000000		0,6637			0,6353	.00.140	10,2041

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	едельно Допу Концентраці		*Поправ. коэф. к ПДК/ОБУ В		центр.
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
0124	Кадмий и его соединения	ПДК м/р	0.0030000	0.0030000	1	Да	Да
	Медь и его соединения (в пересчете на медь)	ПДК м/р	0.0030000	0.0030000	1	Нет	Нет
0164	Никель оксид	ПДК м/р	0.0100000	0.0100000	1	Нет	Нет
0183	Ртуть (Ртуть металлическая)	ПДК м/р	0.0006000	0.0006000	1	Нет	Нет
<u>0184</u>	Свинец и его соединения	ПДК м/р	0.0010000	0.0010000	1	Да	Да
	Хрома трехвалентные соединения (в пересчете на хром)	ОБУВ	0.0100000	0.0100000	1	Нет	Нет
	Цинк и его соединения (в пересчете на цинк)	ПДК м/р	0.2500000	0.2500000	1	Нет	Нет
	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
<u>0325</u>	Мышьяк и его соединения	ПДК м/р	0.0080000	0.0080000	1	Да	По
0328	Углерод (Сажа)	ПДК м/р	0.1500000	0.1500000	- i	<u>да</u> Нет	Да Нет
	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
_0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да
0703	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с * 10	0.0000050	0.0000500	- i +	<u>да</u> Да	<u>да</u> Да
2902	Твердые частицы	ПДК м/р	0.3000000	0.3000000	- i 	Да	да Да
	Мазутная зола теплоэлектрос- танций	ПДК м/р	0.0200000	0.0200000	1 1	Her	<u>да</u> Нет
6009	Группа сумм. (2) 301 330	Группа		 	- 1 -	Да	По
6030	Группа сумм. (2) 184 325	Группа		-	- i- +	<u>да</u> Да	Да Да

6034 Группа сумм. (2) 184 330	Группа	•	-	1	Да	Да
6204 Группа суммации (3) 301 330 2904	Группа	-		1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

I	№ поста	Наименование	Координаты поста				
1			X	у			
l	1	ул.Кедышко, 45	-480	5800			

Код в-ва	Наименование вещества	1	Фоно	вые концент	рации	
		Штиль	Север`	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013
0337	Углерод оксид	0.257	0.257	0.257	0.257	0.257
0703	Бенз/а/пирен (3,4-Бенэпирен)	7.7E-7	7.7E-7	7.7E-7	7.7E-7	7.7E-7
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7 ·	1E-7	1E-7	1 <u>E-7</u>
2 ул.	Тростенецкая, 4	<u> </u>			-4185	

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.037	0.037	0.037	0.037	0.037
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
3ул.	Каховская, 72	<u>" </u>	· <u>-</u>		-5200	51

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
4 ул.	Жилуновича, 3				-730	-(

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
- '		Штиль	Север	Восток	Юr	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1,6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.052	0.052	0.052	0.052	0.052
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
5 ул.	Скорины, 18				2044	4534

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8,2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0,028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
6 ул.	Селицкого, 33				4562	-534

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1,6E-6	1.6E-6
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.06	0.035	0.083	0.055	0.044
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
7 ул.	Тростенецкая, 10Б				-3840	-17

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6		
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-(
2902	Твердые частицы	0.037	0.037	0.037	0.037	0.037		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
8 np.	Партизанский, 66 А				-345	-10		

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2902	Твердые частицы	0.052	0.052	0.052	0.052	0.052		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области Расчетные точки

Nº	• • • •	оординаты точки Вь (м)		Тип точки	Комментарий
	Х	Y	, ,		
14	695,00	820,00	23	застройка	
15	822,00	717,00	19	застройка	
16	1526,10	-61,90	19	застройка	
17	1646,50	-208,60	19	застройка	
18	1892,30	-485,00	26	застройка	
19	1126,00	-937,00	50	застройка	
20	1088,00	-1071,00	50	застройка	

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0.01

Код	Наименование	Сумма Ст/ПДК
0124	Кадмий и его соединения	0.0007885
	Медь и его соединения (в пересчете на медь)	0.0006377
	Ртуть (Ртуть металлическая)	0.0004847
	Хрома трехвалентные соединения (в пересчете на хром)	0.0002551
0229	Цинк и его соединения (в пересчете на цинк)	0.0000344
	Мышьяк и его соединения	0.0000257

Результаты расчета по веществам (расчетные точки)

Вещество: 0164 Никель оксид

Nº	Коорд	Коорд		Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(M)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
20	1088	-1071	50	0.02	328	5,00	0.000	0.000	5
18	1892,3	-485	26	0.02	281	5,00	0.000	0.000	5
19	1126	-937	50	0.02	322	5,00	0.000	0.000	5
15	822	717	19	0.02	202	4,90	0.000	0.000	5
14	695	820	23	0.02	193	4,80	0.000	0.000	5
16	1526,1	-61,9	19	0.02	260	4,80	0.000	0.000	5.
17	1646,5	-208,6	19	0.02	269	4,80	0.000	0.000	5

Вещество: 0184 Свинец и его соединения

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
20	1088	-1071	50	0.09	328	. 5,00	0.081	0.083	5
15	822	717	19	0.09	202	4,90	0.082	0.083	5
18	1892,3	-485	26	0.09	281	5,00	0.081	0.083	5
14	695	820	23	0.09	193	4,80	0.082	0.083	5
19	1126	<i>-</i> 937	50	0.09	322	5,00	0.081	0.083	5
16	1526,1	-61,9	19	0.09	260	4,80	0.082	0.083	5
17	1646,5	-208,6		0.09	269	4,80	0.082	0.083	5

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y(M)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
20	1088	-1071	50	0.56	327	5,00	0.081	0.230	5
19	1126	-937	50	0.54	321	5,00	0.100	0.231	5
18	1892,3	-485	26	0.52	281	5,00	0.193	0.299	5
17	1646,5	-208,6	19	0.49	270	5,00	0.192	0.300	5
16	1526,1	-61,9	19	0.47	262	5,00	0.187	0.300	5
14	695	820	23	0.46	188	5,00	0.163	0.267	5
15	822	717	19	0.44	201	5,00	0.182	0.266	5

Вещество: 0328 Углерод (Сажа)

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
	Х(м)	Y (м)	(м)	(д. ПДК)	ветра	ветра	пдк)	искл.	точки
20	1088	-1071	50	0.01	328	5,00	0.000	0.000	5
19	1126	-937	50	0.01	323	5,00	0.000	0.000	5
18	1892,3	-485	26	0.01	281	4,90	0.000	0.000	5
15	822	717	19	0.01	201	5,00	0.000	0.000	5
14	695	820	23	0.01	192	4,90	0.000	0,000	5
16	1526,1	-61,9	19	0.01	261	4,90	0.000	0.000	5
17	1646,5	-208,6	19	0.01	270	4,90	0.000	0.000	5

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

	Вещеные обоб вори диолонд (так идрид вориметым)												
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип				
	Х(м)	Y(M)	(м)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки				
20	1088	-1071	50			5,00	0.011	0.054	5				
18	1892,3	-485	26	0.24	281	5,00	0.011	0.054	5				
19	1126	-937	50	0.24	322	5,00	0.011	0.054	5				
15	822	717	19	0.24	202	.4,90	0.011	0.053	5				
14	695	820	23	0.23	193	4,90	0.011	0.053	5				
16	1526,1	-61,9	19	0.22	260	4,80	0.011	0.053	5				
17	1646,5	-208,6	19	0.22	269	4,80	0.011	0.054	5				

Вещество: 0337 Углерод оксид

Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тиπ
	Х(м)	Y(M)	(M)	(д. ПДК)	ветра	ветра	ПДК)	искл.	точки
20	1088	-1071	50	0.23	328	5,00	0.193	0.209	5
19	1126	-937	50	0.23	321	5,00	0.195	0.208	5

14	695	820	23	0.21	187	5,00	0.186	0.196	5
18	1892,3	-485	26	0.21	280	5,00	0.188	0.196	5
17	1646,5	-208,6	19	0.21	268	5,00	0.189	0.198	5
16	1526,1	-61,9	19	0.21	258	5,00	0.189	0.198	5
15	822	717	19	0.21	195	5,00	0.190	0.197	5

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Коорд Х(м)	Коорд Ү(м)		Концентр. (д. ПДК)	•	Скор.	Фон (д. ПДК)		Тип точки
20	1088	-1071	50	0.04	327	5,00	0.032		5
19	1126	-937	50	0.04	321	5,00	0.032	0.034	5
15	822	717	19	0.04	203	5,00	0.031	0.033	5
14	695	820	23	0.04	194	5,00	0.031	0.033	5
18	1892,3	-485	26	0.04	282	5,00	0.032	0.033	5
16	1526,1	-61,9	19	0.04	262	5,00	0.032	0.033	5
17	1646,5	-208,6	19	0.04	270	5,00	0.032	0.033	5

Вещество: 2902 Твердые частицы

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)		• 1			Тип точки
15	822	717	19	0.19	200	4,90		0.167	5
14	695	820	23	0.18	191	4,90	0.167	0.167	5
16	1526,1	-61,9	19	0.18	262	4,90	0.164	0.164	5
17	1646,5	-208,6	_ 19	0.18	270	4,80	0.164	0.164	5
19	1126	-937	50	0.18	323	5,00	0.162	0.162	5
20	1088	-1071	50	0.18	328	5,00	0.162	0.162	5
18	1892,3	-485	26	0.18	281	4,80	0.164	0.164	5

Вещество: 2904 Мазутная зола теплоэлектростанций

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)			•	Фон (д. ПДК)		Тип точки
20	1088	<u>-</u> 1071	50	0.05	328	5,00			5
19	1126	-937	50	0.04	323	5,00	0.000	0.000	5
18	1892,3	-485	26	0.04	281	4,90	0.000	0.000	5.
15	822	717	19	0.04	201	5,00	0.000	0.000	5
14	695	820	23	0.04	192	4,90	0.000	0.000	5
16	1526,1	-61,9	19	0.04	261	4,90	0.000	0.000	5
17	1646,5	-208,6	19	0.04	270	4,90	0.000	0.000	5

Вещество: 6009 Группа сумм. (2) 301 330

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
20	1088	-1071	50	0.78	328	5,00	0.057	0.284	5
19	1126	-937	50	0.72	322	5,00	0.057	0.285	5
18	1892,3	-485	26	0.68	281	5,00	0.120	0.352	5
17	1646,5	-208,6	19	0.64	270	5,00	0.135	0.353	5
16	1526,1	-61,9	19	0.62	261	5,00	0.126	0.354	5
14	695	820	23	0.62	193	5,00	0.123	0.320	5
15	822	717	19	0.60	202	5,00	0.118	0.320	5

Вещество: 6030 Группа сумм. (2) 184 325

N º	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
20	1088	-1071	50	0.09	328	5,00	0.081	0.083	5
15	822	717	19	0.09	202	4,90	0.082	0.083	5
18	1892,3	-485	26	0.09	281	5,00	0.081	0.083	5
14	695	820	23	0.09	193	4,80	0.082	0.083	5
19	1126	-937	50	0.09	322	5,00	0.081	0.083	5
16	1526,1	-61,9	19	0.09	260	4,80	0.082	0.083	5
17	1646,5	-208,6	19	0.09	269	4,80	0.082	0.083	5

Вещество: 6034 Группа сумм. (2) 184 330

Nºº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	•	Скор. ветра	Фон (д. ПДК)		Тип точки
20	1088	-1071	50	0.28	328	5,00	0.027	0.137	5
18	1892,3	-485	26	0.27	281	5,00	0.027	0.137	5
19	1126	-937	50	0.26	322	5,00	0.027	0.137	5
15	822	717	19	0.26	202	4,90	0.027	0.136	5
14	695	820	23	0.26	193	4,90	0.027	0.136	5
16	1526,1	-61,9	19	0.25	260	4,80	0.027	0.137	5
17	1646,5	-208,6	19	0.24	269	4,80	0.027	0.137	5

Вещество: 6204 Группа суммации (3) 301 330 2904

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
20	1088	-1071	50	0.50	328	5,00	0.034	0.172	5
19	1126	-937	50	0.46	322	5,00	0.035	0.173	5
18	1892,3	-485	26	0.43	281	5,00	0.065	0.213	5
17	1646,5	-208,6	19	0.40	270	5,00	0.075	0.214	5
16	1526,1	-61,9	19	0.39	261	5,00	0.070	0.214	5
14	695	820	23	0.39	192	5,00	0.067	0.194	5
15	822	717	19	0.38	202	5,00	0.064	0.194	5

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 9, ВАРИАНТ 3 Вариант расчета: По высоте жилой застройки

Расчет проведен на зиму

Расчетный модуль: "ОНД-86 с учетом застройки" Расчетные константы: Е1= 0.01, Е2=0.01, Е3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость	5 м/с
превышения в пределах 5%)	

Параметры источников выбросов

Учет при расч.	№ пл.	№ цеха	№ ист.	Наименование источника	Вар.	Тип		Диамет устья (м		Скорость ГВС (м/с)		Козф рел.). X	Коорд. 1-ос. (м)		рд. с. (м)	Коорд. X2-ос. (м)	Коорд. Ү2-ос. (м)	Ширина источ. (м)
	0	1	4	Дымовая труба	1	1	100,0	6,0		6,5784	166	1,	.0	303,0	-	374,0	303,0	-374,0	
		Код		Наименование вещества		1	Зыброс, ((r/c) E	выброс, (т/г)		то: Ст/П		Xm			Cm/∏		Um	1
		01		Кадмий и его соединения			0.00014	50	0,0000000	1	0,00		656,7			0,000		4,7	
		01	40	Медь и его соединения (в пересч	кете на		0.00100	00	0,0000000	1	0,00	0 1 (656,7			0,000			
				медь)															
		01		Никель оксид			0.12919		0,0000000	1	0,00		656,7			0,007	7 1 695,8	4,7	
		01		Ртуть (Ртуть металлическая	ন)		0.00015		0,0000000	1	0,00		656,7			0,000		4,7	
		01		Свинец и его соединения			0.003640		0,0000000	1	0,00		556,7			0,002		4,7	
		02	28	Хрома трехвалентные соединени	я (в пе	-	0.00100	00	0,0000000	1	0,00	0 16	356,7	4,4		0,000	1 695,8	4,7	
				ресчете на хром)															
		02:	29	Цинк и его соединения (в пересч	ете на		0.00000	00	0,0000000	1	0,00	0 16	356,7	4,4		0,000	1 695,8	4,7	
		00	24	цинк)	\		44 00000												
		03: 03:		Азота диоксид (Азот (IV) окс			41.66000		0,0000000	1	0,09		356,7			0,094		4,7	
		03		Мышьяк и его соединения			0.000000		0,0000000	1	0,00	0 16	356,7			0,000	•	4,7	
		03		Углерод (Сажа) Сера диоксид (Ангидрид серни	··· (6)		0.673000		0,0000000	1,5	0,00	4 14	149,6			0,004		4,7	
		03:		Углерод оксид	этыи)		142.25000 11.07000		0,0000000	1	0,16		356,7			0,161		4,7	
		070		Этперод оксид Бенз/а/пирен (3,4-Бензпире	a)		0.000209		0,0000000, 0,0000000,	1	0,00		556,7			0,001		4,7	
		290		Мазутная зола теплоэлектроста			0.393000		0,0000000	1,5	0,02 0.01		556,7 149,6			0,024 0,017		4,7 4.7	
	Ó	1		Дымовая труба	4	1	180,0			10,23317	188,8	1,		533,0	ı			4,7	0.00
		Коді		Наименование вещества			выброс, (ој 740,7 ыброс, (т/г)	Г10,23317 _[F Ле			υ <u> </u> Xm			162,0		-162,0	0,00
		012		Кадмий и его соединения		•	0.001064		0,0000000	1	0,00		∿III 194,2		има:	Cm/∏		Um	
		014		Медь и его соединения (в пересч	ете на		0.008000		0,0000000	1	0,00		194,2 194,2			0,000 0,000	-	6,3 6,3	
		٥.		медь)	C.C III		0.000000	,0	0,0000000	•	0,00	U J.	134,2	. 0		0,000	3 303,6	0,3	
		016	64	Никель оксид			0.950446	50	0.0000000	1	0.01	0 34	194,2	6		0.010	3 565.8	6,3	
		018		Ртуть (Ртуть металлическая	ı)		0.001083		0,0000000	i	0,00		194,2			0,000	•		
•		018		Свинец и его соединения	,		0.026821		0.0000000	i	0.00		194.2			0.003			
		022	28	Хрома трехвалентные соединени:	я (в пе-		0.010200		0,0000000	i	0,00		194,2			0,000	•	6,3	
				ресчете на хром)	•					-	-,		,-	_		-,		0,0	
		022	29	Цинк и его соединения (в пересч	ете на		0.034000	00	0,0000000	1	0,00	3 4	194,2	6		0,000	3 565,8	6,3	
				цинк)							•		•		-		•	-•-	
		030		Азота диоксид (Азот (IV) окси	д)	2	06.58000	000	0,0000000	1	0,09	1 34	194,2	6		0,087	3 565,8	6,3	
		032		Мышьяк и его соединения			0.000000	00	0,0000000	1	0,00	3 4	194,2	6		0,000		6,3	
		032		Углерод (Сажа)			4.954000	0	0,0000000	1,5	0,00	5 30	5,75	6		0,005		6,3	
		033		Сера диоксид (Ангидрид сернис	тый)		044.3570		0,0000000	1	0,22	9 34	194,2	6		0,220		6,3	
		033		Углерод оксид			53.37000		0,0000000	1	0,00	1 34	194,2	6		0,001	3 565,8	6,3	
		070		Бенз/а/пирен (3,4-Бензпирен			0.001372		0000000,0	1	0,030	3 4	194,2	6		0,029		6,3	
		290		Мазутная зола теплоэлектроста	нций		2.887000		0,0000000	1,5	0,024		57,5			0,023	3 120,1	6,3	
-	0	1		Дымовая труба	1	1	60,0	7,0	650,6	16,9055	103	1,	o _	580,0	-	276,0	580,0	-276,0	0,00
		Код в-ва Наименование ве		Наименование вещества		E	ыброс, (r/c) B	ыброс, (т/г)	F Лет	ro: Cm/Π		(m			Cm/∏		Um	
		018		Ртуть (Ртуть металлическая)		0.000020		0000000	1	0,00		03,4			0,000		8,7	
		030		Азота диоксид (Азот (IV) окси	д)		44.70500	00	0,0000000	1	0,13		03,4			0,130		8,7	
		033		Углерод оксид	-	1	34.11500	00	0,0000000	1	0,020		03,4			0,019		8,7	
		041		Метан			37.05800		0,000000	1	0,00		03,4			0,001		8,7	
		070	3	Бенз/а/пирен (3,4-Бензпирен	1)		0.000001		0,0000000	1	0,000		03,4			0,000		8,7	
		Oros Bensiampen (0,4-bensim															•	•	

-	Λ	2	200	4 400 0	7.00 000.4	0.70000	450	4.0	105.0	450.0	405.0	450.0	
<u> </u>	Uj		3 Дымовая труба 1	1 100,0	7,00 336,1	8,73338	152	1,0	425,0	-152,0	425,0	-152,0	0,00
		Код в-ва 0124	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:			Um Зима:		Xm	Um	
		0124	Кадмий и его соединения	0.0004740	0,0000000	1	0,000	1 875	5,3	0,000	1 919,1	5,6	
		0140	Медь и его соединения (в пересчете на	0.0034160	0,0000000	1	0,001	1 875	5,3	0,001	1 919,1	5,6	
		0164	медь)	0.4007000									
			Никель оксид	0.4237080	0,0000000	1	0,020	1 875	5,3	0,019	1 919,1	5,6	
		0183	Ртуть (Ртуть металлическая)	0.0004850	0,0000000	1	0,000	1 875	5,3	0,000	1 919,1	5,6	
		0184	Свинец и его соединения	0.0119570	0,0000000	1	0,006	1 875	5,3	0,005	1 919,1	5,6	
		0228	Хрома трехвалентные соединения (в пе- ресчете на хром)	0.0045550	0,0000000	1	0,000	1 875	5,3	0,000	1 919,1	5,6	
-		0229	Цинк и его соединения (в пересчете на цинк)	0.0153730	0,0000000	1	0,000	1 875	5,3	0,000	1 919,1	5,6	
		0301	Азота диоксид (Азот (IV) оксид)	49.6000000	0.0000000	1	0,092	1 875	5,3	0.088	1 919.1	5,6	
		0325	Мышьяк и его соединения	0.0001900	0,0000000	i	0,000	1 875	5.3	0,000	1 919,1	5,6	
		0328	Углерод (Сажа)	1,7660000	0,0000000	1,5	0,008	1 640,6	5,3	0.008	1 679,2	5,6	
		0330	Сера диоксид (Ангидрид сернистый)	223.9110000	0.0000000	1	0,207	1 875	5,3	0.198	1 919,1	5,6	
		0337	Углерод оксид	38.1840000	0.0000000	1	0.004	1 875	5,3	0.003	1 919.1	5,6	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0005440	0,0000000	1	0,050	1 875	5,3	0.048	1 919.1	5,6	
		2902	Твердые частицы	3.3060000	0.0000000	3	0,015	937,5	5,3	0,015	959,5	5,6	
		2904	Мазутная зола теплоэлектростанций	1.0790000	0.0000000	1,5	0,037	1 640,6	5,3	0,036	1 679,2	5,6	
+	0	2	4 Дымовая труба 1	1 100,0	6,00 84,28	2,9808	225	1,0		-374,0	303.0	-374,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Cm/ПДК	Xm	Um	
		0183	Ртуть (Ртуть металлическая)	0.0000050	0,0000000	1	0,000	1 438,4	3,7	0,000	1 466,9	3,8	
		0301	Азота диоксид (Азот (IV) оксид)	14.3790000	0,0000000	1	0,045	1 438,4	3,7	0,044	1 466,9	3,8	
		0330	Сера диоксид (Ангидрид сернистый)	0.2880000	0,0000000	1	0,000	1 438,4	3,7	0,000	1 466,9	3,8	
		0337	Углерод оксид	2.6360000	0,0000000	1	0,000	1 438,4	3,7	0,000	1 466,9	3,8	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0001450	0,0000000	1_	0,023	1 438,4	3,7	0,022	1 466,9	3,8	
+	0	2	5 Дымовая труба 1	1 180,0	9,60 446,02	6,162	166	1,0	533,0	-162,0	533,0	-162,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0183	Ртуть (Ртуть металлическая)	0.0000310	0,0000000	1	0,000	3 023,7	4,7	0,000	3 100,9	5	
		0301	Азота диоксид (Азот (IV) оксид)	82.2000000	0,0000000	1	0,048	3 023,7	4,7	0,046	3 100,9	5	
		0330	Сера диоксид (Ангидрид сернистый)	1.6450000	0,0000000	1	0,000	3 023,7	4,7	0,000	3 100,9	5	
		0337	Углерод оксид	15.0700000	0,0000000	1	0,000	3 023,7	4,7	0,000	3 100,9	5	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0003250	0,0000000	1	0,010	3 023,7	4,7	0,009	3 100,9	5	
+	0		23Дымовая труба 1	1 60,0	7,00 836,46	21.73498	110	1,0	580,0	-276,0	580,0	-276,0	0,00
•		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm.	Um Зима:	Ст/ПДК	Xm	Um	
		0183	Ртуть (Ртуть металлическая)	0.0000230	0.0000000	1	0,000	1 784,2	9,6	0,000	1 807,5	10,2	
		0301	Азота диоксид (Азот (IV) оксид)	52.3490000	0,0000000	1	0,128	1 784,2	9,6	0,124	1 807.5	10,2	
		0337	Углерод оксид	157.0470000	0,0000000	1	0,019	1 784,2	9,6	0,019		10,2	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000020	0,0000000	1	0,000	1 784,2	9,6	0,000	1 807,5	10,2	

Выбросы источников по веществам

Вещество: 0124 Кадмий и его соединения

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (M/c)
0	1	4	1		0.0001450	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	1	_5	1_		0.0010640	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
_0	2	3	1	+	0.0004740	_ 1	0,0001	1875,00	5,2872	0,0001	1919,06	5,6298
Итог	0:				0.0004740		0,0001			0,0001	· · · ·	

Вещество: 0140 Медь и его соединения (в пересчете на медь)

Ν ₂ πл.	Nº цех	№ ист.	ı	Учет	Выброс (г/с)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	_ 1		0.0010000	1	0,0002	1656,70	4,3844	0,0002	1695,84	4,6520
0_	1	5	. 1	-	0.0080000	1	0,0003	3494,24	6,0080	0,0003	3565.84	
0	2_	3	1	+	0.0034160	1	0,0005	1875,00	5,2872	0,0005	1919,06	
Итог	того:				0.0034160		0,0005		<u> </u>	0,0005		

Вещество: 0164 Никель оксид

№ пл.	N _□ цех	№ ист.		Учет	Выброс (г/с)	F		Лето			Зима	
	<u> </u>						Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/c)
_ 0_	1_1_	4	1_	-	<u>0.12</u> 91997	1	0,0077	1656,70	4,3844	0,0073	1695,84	4,6520
0	1_	5	1_		0.9504460	1	0,0104	3494,24	6,0080	0,0100		
0	2	3	1	_+	0.4237080	1	0,0196	1875,00	5,2872	0,0187	1919.06	
Итог	того:]	0.4237080		0,0196			0,0187		-,5200

Вещество: 0183 Ртуть (Ртуть металлическая)

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (r/c)	F		Лето			Зима	
<u> </u>							Cm/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0001550	_	0,0002	1656,70	4,3844	0,0001	1695,84	
0	1	5	1		0.0010830	1	0,0002	3494,24	6,0080	0,0002	3565,84	
0_	1	_123	1		0.0000202	1	0,0000	1603,38	8,1379			
0	_2	_3	1	+	0.0004850	1	0,0004	1875,00	5,2872	0,0004		
0	2	4_	1	+	0.0000050	1	0,0000	1438,37				
0	_ 2	5	1	+	0.0000310	1	0,0000	3023,71	4,7438			
0	2	123	1	+	0.0000230	1	0,0000	1784,23				
Итог							0,0004			0,0004	1001,10	10,2011

Вещество: 0184 Свинец и его соединения

№	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето	единения		Зима	
		_					Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
	1	_4_	1	<u> - </u>	0.0036460	1	0,0022	1656,70	4,3844	0.0021	1695,84	
<u> </u>	1	5	_1	<u> - </u>	0.0268210	1	0,0029	3494,24	6,0080	0.0028	3565,84	-,
0	2	3	_1_	+	0.0119570	1	0,0055	1875,00				
Итог	ого:				0.0119570		0,0055			0,0053		-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Вещество: 0228 Хрома трехвалентные соединения (в пересчете на хром)

Nº ⊓л.	№ цех	№ ист.	Тил	Учет	Выброс (r/c)	F		Лето		-	Зима	
							Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0_	1_	_ 4	_ 1		0.0010000	1	0,0001	1656,70	4,3844	0,0001	1695,84	
0	1	5	_1	<u> </u>	0.0102000	1	0,0001	3494,24	6,0080	0,0001		
0	2	3	_1_	+	0.0045550	1	0,0002	1875,00				
Итог	o:				0.0045550		0,0002			0,0002		0,0200

Вещество: 0229 Цинк и его соединения (в пересчете на цинк)

	T						сто сосдя		nopeo ici	o na qiini		
Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
пл.	цех	ист.			(r/c)							
							Cm/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
0	1	_ 5	1	-	0.0340000	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	3	1	+	0.0153730		0,0000	1875,00	5,2872	0,0000	1919,06	5,6298
Итог					0.0153730		0,0000			0,0000		-

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº πл.	Nº uex	№ ист.	Тип	Учет	Выброс (г/с)	F	лоста дио	Лето	(10) 0110	<u> </u>	Зима	
		,,,,,,		i	(1.0)	;	Cm/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	5	1	-	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	
0	1	123	1	_	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	
0	2	3	1	+	49.6000000	1	0,0916	1875,00	5,2872	0,0875	1919,06	5,6298
0	2	4	_ 1	+	14.3790000	1	0,0455	1438,37	3,6668	0,0438	1466,88	3,8354
_0	2	5	1	+	82.2000000	1	0,0483	3023,71	4,7438	0,0459	3100,88	5,0408
0	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133			
Итог							0,3136			0,3015	<u>_</u>	·

Вещество: 0325 Мышьяк и его соединения

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето		-	Зима	
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.000000e0	1	0,0000	1656,70	4,3844	0,0000	1695,84	4,6520
_ 0	1	5	1	-	0.000000e0	1	0,0000	3494,24	6,0080	0,0000	3565,84	6,3263
0	2	3_	1_	+	0.0001900	1	0,0000	1875,00	5,2872	0,0000	1919,06	5,6298
Итог	гого:				0.0001900		0,0000			0,0000	-	

Вещество: 0328 Углерод (Сажа)

№ пл.	Nº цех	№ ист.		Учет	Выброс (г/с)	F		Лето			Зима	
_							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/c)
0	1	4	1	-	0.6730000	1,5	0,0040	1449,61	4,3844	0,0038	1483,86	4,6520
_ 0	1	5	1	-	4.9540000	1,5	0,0054	3057,46	6,0080	0,0052	3120,11	6.3263
0	_ 2	3	1	+	1.7660000	1,5	0,0082	1640,63	5,2872	0,0078	1679,18	5,6298
Итог	⁄Iтого:				1.7660000		0,0082			0,0078		'

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F	pu pronon	Лето		<u></u>	Зима	
							Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/c)
0	1	4	1	-	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
_0	1	5	1	•	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	
0_	2	3_	1	+	223.9110000	1	0,2068	1875,00	5,2872	0,1976		
0	2	4	1	+	0.2880000	1	0,0005	1438,37	3,6668	0,0004	1466,88	
0	2	5	_1	+	1.6450000	1	0,0005	3023,71	4,7438	0,0005		
Итог	ого: 225.844000						0,2078			0,1985		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Вещество: 0337 Углерод оксид

No	Ma	Mo	T	1/	Бещес		 	nehott or	<u></u>			
Nº	Nº	N₂	INU	Учет	Выброс	F		Лето			Зима	
пл.	цех	ист.			(r/c)							
			_				Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)
_0	1	4	_1		11.0700000	1	0,0013	1656,70	4,3844	0,0013		
0	1	5	1	-	53.3700000	1	0,0012	3494,24	6,0080	0,0011	3565,84	
0_	1	123	1_		134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	
_ 0	2	3	_ 1	+	38.1840000	_1	0,0035	1875,00	5,2872	0,0034		
0	2_	4	1	+	2.6360000	1	0,0004	1438,37			1466,88	
0_	2	5	1	+	15.0700000	1	0,0004	3023,71	4,7438		3100,88	
0_	_ 2	123	1	+	157.0470000	1	0,0192	1784,23				
Итог							0,0236		<u>,</u>	0,0228		

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

№ пл.	Nº ⊔ex	№ ист.	Тиπ	Учет	Выброс (г/с)	F		Лето		·	Зима	
	,				-		Ст/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	0.0002090	1	0,0025	1656,70	4,3844	0,0024	1695,84	4,6520
0	1	5	1		0.0013720	1	0,0030	3494,24	6,0080	0,0029	3565,84	
0	1	123	1	-	0.0000019	1	0,0000	1603,38	8,1379	0,0000	1631,56	
0	2	3	1	+	0.0005440	1	0,0050	1875,00	5,2872	0,0048	1919,06	
_0	2	4	1	+	0.0001450	1	0,0023	1438,37	3,6668	0,0022	1466,88	
_0	2	_ 5	1	+	0.0003250	1	0,0010	3023,71	4,7438	0.0009	3100,88	
_0	2	123	1	+	0.0000020	1	0,0000	1784,23	9,6133	0,0000		
Итог							0,0083			0,0079		

Вещество: 2902 Твердые частицы

№ пл.	Nº цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето	·		Зима	
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	2	3	_1_	+	3.3060000	3	0,0153	937,50	5,2872	0.0146	959,53	5,6298
Итог	o:		_		3.3060000		0,0153			0,0146	<u> </u>	<u> </u>

Вещество: 2904 Мазутная зола теплоэлектростанций

Nº ⊓л.	Nº цех	№ ист.	l	Учет	Выброс F (г/с)	F		Лето			Зима	
							Cm/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-]	0.3930000 1,	,5	0,0175	1449,61	4,3844	0.0167	1483,86	4,6520
0_	1	<u>5</u>	1_	_	2.8870000 1,	5	0,0237	3057,46	6,0080	0,0228	3120,11	6,3263
0	2	3_	1_1	+	1.0790000 1,	5	0,0374	1640,63	5,2872	0.0357	1679.18	
Итог	0:				1.0790000		0,0374			0,0357		

Выбросы источников по группам суммации

Группа суммации: 6009

							, ,,,,,,	<u>а суммациі</u>	71. 0000				
Nº nn.	Nº uex	№ ист.	Тип	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
	40%	,,,,,,	ĺ		B-04	(176)		Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm	Um (м/c)
0	_1	4	1	_	0301	41.6600000	1	0.0988	1656.70	4,3844	0.0944	1695,84	4,6520
0	_1_	4	1	-	0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	
_ 0_	1	5	1		0301	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	
0	_1_	5	1_		0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565.84	6,3263
0	1	123	1	-	_0301_	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631.56	8,7327
0	2	3	1	+	0301	49.6000000	1	0,0916	1875,00	5,2872	0,0875	1919.06	5,6298
0	2	3	1_	+	0330	223.9110000	1	0,2068	1875,00	5,2872	0,1976	1919,06	5,6298
0	2	4	1	+	0301	14.3790000	1	0,0455	1438,37	3,6668	0,0438	1466,88	3,8354
0	_2	<u> 4</u>	1	+	0330	0.2880000	1	0,0005	1438,37	3,6668	0,0004	1466,88	3,8354
0	2	5	1	+	0301	82.2000000	1	0,0483	3023,71	4,7438	0,0459	3100,88	5,0408
0	2	5	1	_+	0330	1.6450000	1	0,0005	3023,71	4,7438	0,0005	3100,88	5,0408
0	2	123	_1_	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
Итого	<u> </u>					424.3720000		0,5214			0,5000		

Группа суммации: 6030

- I							<u>,</u>	- Cylana a Hal	<u> </u>	_			
№ пл.	Иех Иех	№ ист.	Тип 	Учет	Код в-ва	Выброс (г/с)	F	-	Лето			Зима	
								Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (M/c)
0	_1_	4	1		0184	0.0036460	_ 1	0,0022	1656,70	4,3844	0.0021	1695.84	
0	1_	4_	1		0325	0.000000e0		0,0000	1656,70	4,3844	0,0000	1695,84	
0	1	5	1		0184	0.0268210	1	0,0029	3494,24	6,0080	0,0028	3565,84	6,3263
0	1	5	1_		0325	0.000000e0	1	0,0000	3494,24	6,0080	0,0000	3565.84	6,3263
0	2	3_	1_	+	0184	0.01 <u>19570</u>	1	0,0055	1875,00	5,2872	0,0053	1919.06	5,6298
0	_2_	3	<u> 1</u>	+	0325	0.001900	_ 1	0,0000	1875,00	5,2872	0,0000	1919.06	5,6298
<u>Итого</u>	<u></u> .				_	0.0121470		0,0055			0,0053		0,0200

Группа суммации: 6034

№ цех	№ ист.	Тил	Учет	Код в-ва	Выброс (r/c)	F		Лето			Зима	
		<u> </u>				[Ст/ПДК	Xm	Um (M/c)	Ст/ПДК	Xm	Um (M/c)
1_	_ 4	_ 1		<u>01</u> 84	<u> </u>	_ 1	0,0022	1656,70	4,3844	0.0021		4.6520
1	4	1	-	0330	142.2500000	1	0,1688	1656.70				4,6520
_ 1	_5	1	-	0184	0.0268210	1	0.0029					6,3263
1	5	1	7	0330	1044.3570000	1						6,3263
					цех ист. В-ва 1 4 1 - 0184 1 4 1 - 0330 1 5 1 - 0184	цех ист. в-ва (г/с) 1 4 1 - 0184 0.0036460 1 4 1 - 0330 142.2500000 1 5 1 - 0184 0.0268210	цех ист. в-ва (г/с) 1 4 1 - 0184 0.0036460 1 1 4 1 - 0330 142.2500000 1 1 5 1 - 0184 0.0268210 1	цех ист. в-ва (г/с) 1 4 1 - 0184 0.0036460 1 0,0022 1 4 1 - 0330 142.2500000 1 0,1688 1 5 1 - 0184 0.0268210 1 0,0029	цех ист. в-ва (г/с) Ст/пдк Xm 1 4 1 - 0184 0.0036460 1 0,0022 1656,70 1 4 1 - 0330 142.2500000 1 0,1688 1656,70 1 5 1 - 0184 0.0268210 1 0,0029 3494,24	цех ист. в-ва (г/с) Ст/пдк Xm Um (м/с) 1 4 1 - 0184 0.0036460 1 0,0022 1656,70 4,3844 1 4 1 - 0330 142,2500000 1 0,1688 1656,70 4,3844 1 5 1 - 0184 0.0268210 1 0,0029 3494,24 6,0080	цех ист. в-ва (г/с) Ст/пдк Xm Um (м/с) Ст/пдк 1 4 1 - 0184 0.0036460 1 0,0022 1656,70 4,3844 0,0021 1 4 1 - 0330 142.2500000 1 0,1688 1656,70 4,3844 0,1612 1 5 1 - 0184 0.0268210 1 0,0029 3494,24 6,0080 0,0028	цех ист. нем ст/с) ст/пдк хм Um (м/с) ст/пдк хм 1 4 1 - 0184 0.0036460 1 0,0022 1656,70 4,3844 0,0021 1695,84 1 4 1 - 0330 142,2500000 1 0,1688 1656,70 4,3844 0,1612 1695,84 1 5 1 - 0184 0.0268210 1 0,0029 3494,24 6,0080 0,0028 3565,84

0	2	3	1	+	0184	0.0119570	1	0,0055	1875,00	5,2872	0,0053	1919,06	5,6298
0	2	3	_ 1	+	0330	223.9110000	1	0,2068	1875,00	5,2872	0,1976	1919,06	5,6298
0	2	4	1	+	0330	0.2880000	1	0,0005	1438,37	3,6668	0,0004	1466,88	3,8354
0	2	5	1	+	0330	1.6450000	1	0,0005	3023,71	4,7438	0,0005	3100,88	5,0408
Итого	:					225.8559570		0,2133			0,2038	<u> </u>	

Группа суммации: 6204

№ пл.	Nº цех	№ ист.	Тил	Учет	Код в-ва	Выброс (г/с)	F		Лето			Зима	
						(,		Ст/ПДК	Xm	Um (м/c)	Ст/ПДК	Xm.	Um (м/c)
0	1	4	4	-	0301	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0_	1	4	1		0330	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	4	1		2904	0.3930000	1,5	0,0175	1449,61	4,3844	0,0167	1483,86	4,6520
0	1	5	1	-	0301	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	5	1	-	0330	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	1	5	1	-	2904	2.8870000	1,5	0,0237	3057,46	6,0080	0,0228	3120,11	6,3263
0	1	_123	1	-	0301	44.7050000	1	0,1347	1603,38	. 8,1379	0,1297	1631,56	
0	2	3	1	+	0301	49.6000000	1	0,0916	1875,00	5,2872	0,0875	1919,06	
0	2	_ 3	1	+	0330	223.9110000	1	0,2068	1875,00	5,2872	0,1976	1919,06	
0	2	3	1	+	2904	1.0790000	1,5	0,0374	1640,63	5,2872	0,0357	1679,18	
0	2	4	1	+	0301	14.3790000	1	0,0455	1438,37	3,6668	0,0438	1466.88	
0_	2	4	1	+	0330	0.2880000	1	0,0005	1438,37	3,6668	0,0004	1466.88	
0	_2	5	1	+	0301	82.2000000	1	0,0483	3023,71	4,7438	0,0459	3100.88	
0	2	5	1	+	0330	1.6450000	1	0,0005	3023,71	4,7438	0,0005	3100,88	
0	2	123	_1	+	0301	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
<u>Итого</u>	:					425.4510000		0,5587			0,5357		,

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	дельно Допу Концентрац		*Поправ. коэф. к ПДК/ОБУ В	Фоновая концентр.		
<u>.</u>		Тип	Спр. значение	Исп. в расч.		Учет	Интерп	
0124	Кадмий и его соединения	ПДК м/р	0.0030000	0.0030000	1	Да	Да	
	Медь и его соединения (в пересчете на медь)	ПДК м/р	0.0030000	0.0030000	1	Нет	Нет	
	Никель оксид	ПДК м/р	0.0100000	0.0100000	1	Нет	Her	
	Ртуть (Ртуть металлическая)	ПДК м/р	0.0006000	0.0006000	1	Нет	Нет	
	Свинец и его соединения	ПДК м/р	0.0010000	0.0010000	1	Да	Да	
	Хрома трехвалентные соединения (в пересчете на хром)	ОБУВ	0.0100000	0.0100000	1	Нет	Нет	
	Цинк и его соединения (в пересчете на цинк)	ПДК м/р	0.2500000	0.2500000	1	Нет	Нет	
	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да	
0325	Мышьяк и его соединения	ПДК м/р	0.0080000	0.0080000	1	Да	Да	
	Углерод (Сажа)	ПДК м/р	0.1500000	0.1500000	1	Нет	Нет	
	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да	
	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да	
	Бенз/а/пирен (3,4-Бензпирен)	ПДК с/с * 10	0.0000050	0.0000500	1 ·	Да	Да	
	Твердые частицы	ПДК м/р	0.3000000	0.3000000	1	Да	Да	
	Мазутная зола теплоэлектрос- танций	ПДК м/р	0.0200000	0.0200000	1	Да	Да	
	Группа сумм. (2) 301 330	Группа	-	-	1	Да	Да	
	Группа сумм. (2) 184 325	Группа	-	-	1	Да	Да	
	Группа сумм. (2) 184 330	Группа		-	1	Да	Да	
6204	Группа суммации (3) 301 330 2904	Группа	-	-	1	Да	Да	

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

№ поста	Наименование	Координа	ты поста
		x	у
	ул.Кедышко, 45	-480	5800

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013
0337	Углерод оксид	0.257	0.257	0:257	0.257	0.257
0703	Бенз/а/пирен (3,4-Бензпирен)	7.7E-7	7.7E-7	7.7E-7	7.7E-7	7.7E-7
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
2 ул.	Тростенецкая, 4				-4185	

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
	<u></u>	Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073 .	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.037	0.037	0.037	0.037	0.037
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
3 ул.	Каховская, 72				-5200	51

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
4ул.	Жилуновича, 3				-730	-

(од в-ва	Наименование вещества	Фоновые концентрации					
		Штиль	Север	Восток	Юг	Запад	
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6	
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5	
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081	
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7	
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028	
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315	
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6	
2902	Твердые частицы	0.052	0.052	0.052	0.052	0.052	
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7	
5 ул.	. Скорины, 18		15-1	16-7	2044	45	

Код в-ва	Наименование вещества	Фоновые концентрации					
<u></u>		Штиль	Север	Восток	Юг	Запад	
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6	
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5	
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073	
0325	Мыщьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7	
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028	
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754	
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6	
2902	Твердые частицы	0.055	0.055	0.055	0.055	0.055	
<u>29</u> 04	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7	
6 ул.	Селицкого, 33				4562	-534	

Код в-ва	Наименование вещества		Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6			
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			

0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028 -	0.028	0.028	0.028
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2902	Твердые частицы	0.06	0.035	0.083	0.055	0.044
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
7 vr	Тростенецкая 105				-3840	-176

Код в-ва	Наименование вещества	Фоновые концентрации					
		Штиль	Север	Восток	Юг	Запад -	
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6	
0184	Свинец и его соединения	8.9E-5	8.9E-5	8:9E-5	8.9E-5	8.9E-5	
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073	
0325	Мышьяк и его соединения	1E-7	1E-7 *	1E-7	1E-7	1E-7	
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028	
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871	
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6	
2902	Твердые частицы	0.037	0.037	0.037	0.037	0.037	
2904	Мазутная зола теплоэлектростанций	1E - 7	1E-7	1E-7	1E-7	1E-7	
8 пр.	Партизанский, 66 А			İ	-345	-10 ²	

Код в-ва	Наименование вещества	Фоновые концентрации					
		Штиль	Север	Восток	Юг	Запад	
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6	
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5	
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081	
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7	
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028	
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315	
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6	
2902	Твердые частицы	0.052	0.052	0.052	0.052	0.052	
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7	

Перебор метеолараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Ша	г перебора ветра
0	360		1

Расчетные области Расчетные точки

Nº		аты точки и)	Высота (м)		Тип точки	Комментарий
	X	Y	(,			
14	695,00	820,00	23	застройка		
15	822,00	717,00	19	застройка		
16	1526,10	-61,90	19	застройка	· ·	
17	1646,50	-208,60	19	застройка		
18	1892,30	-485,00	26	застройка		
19	1126,00	-937,00	50	застройка		
20	1088,00	-1071,00	50	застройка		

Вещества, расчет для которых не целесообразен Критерий целесообразности расчета E3=0.01

Код	Наименование	Сумма
		Ст/ПДК
	Кадмий и его соединения	0.0007697
	Медь и его соединения (в пересчете на медь)	0.0005024
	Ртуть (Ртуть металлическая)	0.0003929
	Хрома трехвалентные соединения (в пересчете на хром)	0.0002010
0229	Цинк и его соединения (в пересчете на цинк)	0.0000271
	Мышьяк и его соединения	0.0000230
	Углерод (Сажа)	0.0077916
0410	Метан	0.000000e0

Результаты расчета по веществам (расчетные точки)

Вещество: 0164 Никель оксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	• 1	•	Фон (д. ПДК)	Фон до искл.	Тип точки
19	1126	-937	50	0.03	318	5,00	0.000	0.000	5
20	1088	-1071	50	0.03	324	5,00	0.000	0.000	5
14	695	820	23	0.03	196	5,00	0.000	0.000	5
15	822	717	19	0.03	205	5,00	0.000	0.000	5
16	1526,1	-61,9	19	0.03	265	5,00	0.000	0.000	5
17	1646,5	-208,6	19	0.03	273	5,00	0.000	0.000	5
18	1892,3	-485	26	0.02	283	5,00	0.000	0.000	5

Вещество: 0184 Свинец и его соединения

N₂	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
19	1126	<u>-9</u> 37	50	0.09	318	5,00	0.081	0.083	5
_20	1088	-1071	50	0.09	324	5,00	0.081	0.083	5
14	695	820	23	0.09	196	5,00	0.082	0.083	5
15	822	717	19	0.09	205	5,00	0.082	0.083	5
16	1526,1	-61,9	19	0.09	265	5,00	0.082	0.083	5
17	1646,5	-208,6	19	0.09	273	5,00	0.082	0.083	5
_18	1892,3	<u>-4</u> 85	26	0.09	283	5,00	0.081	0.083	5

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

. N 2	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
20	1088	-1071	50	0.52	327	5,00	0.081	0.230	5
19	1126	-937	50	0.51	315	5,00	0.223	0.303	5
18	1892,3	-485	26	0.48	281	5,00	0.193	0.299	5
17	1646,5	-208,6	19	0.46	270	5,00	0.192	0.300	5
16	1526,1	-61,9	19	0.44	261	5,00	0.187	0.300	5
14	695	820	23	0.42	188	5,00	0.163	0.267	5
<u>1</u> 5	822	717	19	0.41	202	5,00	0.182	0.266	5

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
_19 _	1126	-937	50	0.38	318	5,00	0.011	0.054	5
20	1088	-1071	50	0.36	324	5,00	0.011	0.054	5
14	695	820	23	0.31	196	5,00	0.011	0.053	5
15	822	717	19	0.30	205	5,00	0.011	0.053	- 5
16	1526,1	-61,9	19	0.29	265	5,00	0.011	0.053	5
17	1646,5	-208,6	19	0.28	273	5,00	0.011	0.054	
_18	1892,3	-485	26	0.25	283	5,00	0.011	0.054	5

Вещество: 0337 Углерод оксид

Nº	Коорд Х(м)	Коорд		Концентр.	Напр.	Скор.	Фон (д.	Фон до	Тип
		<u> Ү(м)</u>	(M)	<u>(д. ПДК)</u>	ветра	ветра	ПДК)	искл.	ТОЧКИ
20	1088	<u>-1071</u>	50	0.23	328	5,00	0.193	0.209	5
<u> 19 </u>	1126	937	50	0.23	321	5,00	0.195	0.208	5
<u> 14 </u>	695	820	23	0.21	187	5,00	0.186	0.196	5
18	1892,3	-485	26	0.21	280	5,00	0.188	0.196	5
_17	1646,5	-208,6	19	0.21	267	5,00	0.189	0.198	 5
_16	1526,1	-61,9	19	0.21	258	5,00	0.189	0.198	
_15	822	717	19	0.20	195	5,00	0.190	0.197	<u></u>

Вещество: 0703 Бенз/а/пирен (3,4-Бензпирен)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
19	1126	-937	50	0.04	319	5,00	0.032	0.034	5
20	1088	-1071	50	0.04	324	5,00	0.032	0.034	5
14	695	820	23	0.04	196	5,00	0.031	0.033	5
15	822	717	19	0.04	204	5,00	0.031	0.033	5
16	1526,1	-61,9	19	0.04	264	5,00	0.032	0.033	5
17	1646,5	-208,6	19	0.04	272	5,00	0.032	0.033	5
18	<u>18</u> 92,3	-485	26	0.04	282	5,00	0.032	0.033	5

Вещество: 2902 Твердые частицы

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
15	822	717	19	0.18	205	5,00		0.167	5
14	695	820	23	0.18	196	5,00	0.167	0.167	5
16	1526,1	-61,9	19	0.18	265	5,00	0.164	0.164	5
17	1646,5	-208,6	19	0.18	273	5,00	0,164	0.164	5.
18_	1892,3	485	26	0.18	-		0.177	0.177	5
19	1126	-937	50	0.18	315	5,00	0.164	0.164	5
20	1088	-1071	50	0.18	324	1,90	0.169	0.169	5

Вещество: 2904 Мазутная зола теплоэлектростанций

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	•	Фон (д. ПДК)	Фон до искл.	Тип точки
19	1126	-937	50	0.06	318	5,00	1.00e-6	5.00e-6	5
20	1088	-1071	50	0.05	324	5,00	1.00e-6	5.00e-6	5
14	695	820	23	0.05	196	5,00	1.00e-6	5.00e-6	5
_ 15	822	717	19	0.05	205	5,00	1.00e-6	5.00e-6	5
16	1526,1	-61 <u>,</u> 9	19	0.05	265	5,00	1.00e-6	5.00e-6	5
17	1646,5	-208,6	19	0.04	273	5,00	1.00e-6	5.00e-6	5
18	1892,3	-485	26	0.04	283	5,00	1.00e-6	5.00e-6	5

Вещество: 6009 Группа сумм. (2) 301 330

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
20	1088	-1071	50	0.81	326	5,00	0.057	0.284	5
19	1126	-937	50	0.80	319	5,00	0.057	0.285	5.
14	695	820	23	0.66	195	5,00	0.123	0.320	5
17	1646,5	-208,6	19	0.65	271	5,00	0.135	0.353	5
18	1892,3	-485	26	0.64	282	5,00	0.120	0.352	5
16	1526,1	-61,9	19	0.64	264	5,00	0.126	0.354	5
<u> 15 </u>	822	717	19	0.63	204	5,00	0.118	0.320	5

Вещество: 6030 Группа сумм. (2) 184 325

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип
19	1126	-937	50	0.09	318	5,00	0.081	0.083	5
_20	1088	-1071	50	0.09	324	5,00	0.081	0.083	- 5
14	695	820	23	0.09	196	5,00	0.082	0.083	5
_15	822	717	19	0.09	205	5,00	0.082	0.083	5.
16	1526,1	-61,9	19	0.09	265	5,00	0.082	0.083	5
	1646,5	-208,6	19	0.09	273	5,00	0.082	0.083	 5
18	1892,3	-485	26	0.09	283	5,00	0.081	0.083	

Вещество: 6034 Группа сумм. (2) 184 330

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	- r	• 1	Фон (д. ПДК)		Тип точки
19	1126	-937	50	0.41	318	5,00		0.137	5
20	1088	-1071	50	0.38	324	5,00	0.027	0.137	5
14	_695	820	23	0.34	196	5,00	0.027	0.136	5
15	822	717	19	0.32	205	5,00	0.027	0.136	5
16	1526,1	-61,9	19	0.31	265	5,00	0.027	0.137	5
17	1646,5	-208,6	19	0.30	273	5,00	0.027	0.137	5.
18	1892,3	-485	26	0.27	283	5,00	0.027	0.137	5

Вещество: 6204 Группа суммации (3) 301 330 2904

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (д. ПДК)	Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
20	1088	-1071	50	0.52	326	5,00	0.034	0.172	5
19	1126	-937	50	0.52	319	5,00	0.035	0.173	5
14	695	820	23	0.43	195	5,00	0.067	0.194	5
17	1646,5	-208,6	19	0.41	272	5,00	0.075	0.214	5
16	1526,1	-61,9	19	0.41	264	5,00	0.070	0.214	5
15	822	717	19	0.41	204	5,00	0.064	0.194	5
18	1892,3	-485	26	0.40	282	5,00	0.065	0.213	5

Приложение К на листах 241-249

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 7, Пождепо проектируемое

Вариант расчета: На лето Расчет проведен на лето

Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0,01, E2=0,01, E3=0,01, S=999999,99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5,9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость превышения в пределах 5%)	5 м/с

Параметры источников выбросов

Учет	№ пл.	Nº	№ ист	. Наименование источника	Bap.	Тип	і Высота	Диамето	Объем	Скорость	. T	емп. К	(оэф.	Коорд.	· Voors		1/2	1 1
при расч.		цеха					ист. (м)	устья (м)	ГВС (куб.м/с)	ГВС (м/с)				хоорд. X1-ос. (м)	Коорд. Ү1-ос. (а	Коорд. и) X2-ос. (м	Коорд.) Y2-ос. (м)	Ширина источ. (м)
<u>%</u>	0			2Дефлектор РСЦ	1		6,5	0,30		1,04689	7	20	1,0	487,0	-126	,0 487	0 -126,0	
		Код ¹ 29	B-8a	Наименование вещества	3		Выброс, (г		брос, (т/г)		ето:	Cm/ПДК	C Xm	ı Um S		/ПДК Хт	Um	
%	<u> </u>			Пыль неорганическая, содержащ 70% SiO2 В Вытяжка РММ РСЦ	ая мене	e	0,011200		0000000	3		0,205	18,	5 0,5	0,	712 9,4	0,5	
/0		Код			1 1		1 5,5	0,40	0,05			20	1,0	469,0			0 -109,0	0,00
		29	08	Наименование вещества Пыль неорганическая, содержащ 70% SiO2	і ая мене	е	Выброс, (г 0,004000		брос, (т/г) 0000000	F Ле	ето:	Ст/ПДК 0,108	15,7			/ПДК Xm 424 7,5	Um 0,5	
%	0	1		Вытяжка РММ РСЦ	1	_ 1	5,5	0,40	0,05	0,39789	7	20	1,0	457,0	-105	,0 457,	0 -105,0	0,00
		Код 29	D8	Наименование вещества Пыль неорганическая, содержаща 70% SiO2		е	Выброс, (г 0,004000	/c) Вы 0 0,	брос, (т/г) 0000000				Xm 15,7	Um 3	има: Ст	ПДК Xm 124 7,5	Um 0,5	0,00
%	0	1	25	Вытяжка РММ РСЦ	1	1	5,5	0,40	0,05	0,39789		20	1,0	448,0	-101	,0 448,	0 -101,0	0,00
		Код I 290)8 	Наименование вещества Пыль неорганическая, содержаща 70% SiO2	яя мене	Э	Выброс, (г 0,004000		брос, (т/г) 0000000					Um 3	има: Ст		Um 0,5	0,00
%	0	_ 1		Вытяжка РММ РСЦ	1	1	5.5	0,40	0.05	0.39789		20	1,0	439.0	-96	,0 439,	0 -96,0	0,00
		Код s 290	8	Наименование вещества Пыль неорганическая, содержаща 70% SiO2	эя мене	e	Выброс, (г. 0,004000	/с) Вы	5poc, (τ/r) 0000000			Ст/ПДК 0,108		Um 3	има: Ст/	, <u>о 435,</u> ПДК Xm 124 7,5	Um 0,5	0,00
%	0	1	27	Вытяжка РММ РСЦ	1	1	5,5	0.40	0.05	0,39789		20	1,0	430,0	-93	,0 430,	93,0	0,00
		Код в		Наименование вещества	·		Выброс, (г.	(с) Вы	Брос, (т/г)			Ст/ПДК	Xm		<u>-93</u> има: Cm/		սլ - <u>93,0</u> Um	
L oz T				Пыль неорганическая, содержаща 70% SiO2	я мене	•	0,004000	0,0	0000000	3	•	0,108	15,7		0,4		0,5	
<u>%</u>	0	11	28	Вентпроем ЭМ ЭЦ	1	1	1,1	1,38	0,074	0,04947		20	1,0	393,0	-78	0 393,	-78.0	0,00
		Код в 290	8	Наименование вещества Пыль неорганическая, содержаща 70% SiO2	я менее	,	Выброс, (г/ 0,0028000	'c) Выб) 0,0	poc, (τ/r) 0000000	F Ле 3	TO:	Ст/ПДК 0,800	Xm 5,7	Um 3 0,5	има: Cm/ 2,2	ПДК Хт	Um 0,6	
%	0	1		Вентпроем мастерской "Энергопрома"	1	1	2,0	0,22	0,04	1,05226		20	1,0	421,0	-89	0 421,	-89,0	0,00
		Код в 290		Наименование вещества Пыль неорганическая, содержаща 70% SiO2	я менее	;	Выброс, (г/ 0,0396300		ірос, (т/г) 1000000	F Ле [.] 3	то:	Cm/ПДК 11,324	Xm 5,7	Um 3i 0,5	има: Cm/ 26,		Um 0,5	
%	0	1		Дефлектор заготовительногоучастка РММ	1	1	6,0	0,40	0,132	1,05042		20	1,0	372,0	-83,	0 372,	-83,0	0,00
_		Код в 290	8	Наименование вещества Пыль неорганическая, содержаща 70% SiO2	я менее	I	Зыброс, (г/ 0,0735000	,	рос, (т/г) 000000	F Лет 3	ro:	Ст/ПДК 1,618	Xm 17,1	Um 3i 0,5	има: Cm/ 4,6		Um 0,5	
% 	0	1		Вытяжка заготовительногоучастка РММ	1	1	6,5	0,50	0,84	4,27808		20	1,0	360,0	-81,	0 360,0	-81,0	0,00
		Код в- 290		Наименование вещества Пыль неорганическая, содержащая 70% SiO2	я менее	E	Зыброс, (г/с 0,0735000		рос, (т/r) 000000	F Лет 3	ro: (Ст/ПДК 1,342	Xm 18,5	Um 3v 0,5	ма: Cm/i 0,9	• •	Um 1	

%	_	0	41	220	-		4												
		U	1 Код в-ва	32 Вытяжка мастерской ХЦ	<u> </u>	L	1 1,1	0,15		12,39286		20	1,0	803,0		-397,0	803,0	-397,0	0,00
			2908	Наименование вещества Пыль неорганическая, содержащ	3 22 MOU		Выброс, (г/с) 0,0200000		рос, (т/г)		ето:		Xm		Зима:		Χm	Um	
					ая мен	ce	0,0200000	0,0	000000	3		1,449	13,8	1,2		1,449	13,8	1,2	
%		0	1	36 Вытяжка ЦЦР (сварочный	1		1 6,5	0,50	0,303	1,54317	7	20	1,0	472,0	<u> </u>	-130,0	472,0	-130,0	0,00
				пост)	1								-7-]	,	1	,.	,0	.00,0	0,00
			Код в-ва 0301				Выброс, (г/с)		рос, (т/г)	FЛe	ето:		Xm		Зима:	Ст/ПДК	Xm	Um	
			0301	Азота диоксид (Азот (IV) око Углерод оксид	эид)		0,0032000	•	000000	1		0,023	37,1	0,5		0,041	28,7	0,7	
			2908	Утперод оксид Пыль неорганическая, содержащ	20 11011		0,0036920 0.0001481		000000	1 3		0,001	37,1	0,5		0,002	28,7	0,7	
_				70% SiO2	ал мен		0,0001461	U,U	000000	3		0,003	18,5	0,5		0,005	14,3	0,7	
%		0	1	37 Вытяжка РММ (сварочный	1		1 3,0	0,40	0,206	1,6393	3	20	1,0	350,0		-91,0	350,0	-91,0	0,00
		Ш.	Ver p.pe	пост)	_												•		-,
			Код в-ва 0301	Наименование вещества Азота диоксид (Азот (IV) око			Выброс, (г/с) 0,0032000		OC, (T/r)	F Jie	ето:	Ст/ПДК	Xm		Зима:		Χm	Um	_ _
			0337	Углерод оксид	ид)		0,0032000		000000	า 1		0,142	17.1	0,5		0,160	17,1	0,8	
			2908	Пыль неорганическая, содержащ	ая мена	98	0,0001481		000000	3		0,008 0,016	17,1 8,6	0,5 0,5		0,009	17,1 [,]	0,8	
				70% SiO2				_				0,010	0,0	U,S		0,019	8,6	0,8	
%		0	1	51 Дыхательные патрубки АЗС	1		1 2,2	0,15	0,019	1,07518		20	1,0	189,0		100,0	189,0	100,0	0,00
			Код в-ва 2754				Выброс, (г/с)		юс, (т/г)		это:	Ст/ПДК	Xm		Вима:	Ст/ПДК	Xm	Um	
			2754	Углеводороды предельные алифа го ряда C11-C19	атическ	0-	0.0142400	0,00	000000	1		0,326	12,5	0,5		0,982	6,8	0,5	
+		0	2 1	24 Вытяжка гаража-стоянки	1		1 7,8	0,50	1,532	7,80241		20	1,0	629,0		79,0	629,0	79,0	0,00
				(пождепо)	`		1 ',"	0,00	1,002	7,00241	İ	20	1,0	029,0	Ί	79,0	029,0	79,0	0,00
			Код в-ва	Наименование вещества			Выброс, (г/с)	Выбр	ос, (т/г)	F Jle	TO:	Ст/ПДК	Xm	Um 3	Вима:	Ст/ПДК	Xm	Um	
			0301	Азота диоксид (Азот (IV) окс	ид)		0,0004500		00000	1		0,001	57,8	0,7		0,001	75,6	1,1	
			0304 0328	Азот (II) оксид (Азота оксид	1)		0,0000730		00000	1		0,000	57,8	0,7		0,000	75,6	1,1	
			0320	Углерод (Сажа) Сера диоксид (Ангидрид серни	AT: 181		0,0000210		00000	1,5		0,000	50,6	0,7		0,000	66,1	1,1	
			0337	Углерод оксид	Стыи)		0,0000830 0,0132820		00000	1 1		0,000	57,8	0,7		0,000	75,6	1,1	
			2754	Углеводороды предельные алифа	тическ	0-	0,0019660		00000	1		0,002 0,002	57,8 57,8	0,7 0,7		0,001 0,001	75,6 75,6	1,1	
				го ряда С11-С19				0,00	00000	'		0,002	37,0	0,7		0,001	75,6	1,1	
+		0	2 1	25 Вытяжка гаража-стоянки	1	-	7,8	0,50	1,532	7,80241		20	1,0	625,0		82,0	625,0	82,0	0,00
				(пождепо)					·				'''	0_0,0		52,5	01.0,0	02,0	0,00
			Код в-ва	Наименование вещества			Выброс, (г/с)		ос, (т/г)	F Ле	TO:	Ст/ПДК	Xm	Um 3	има:	Ст/ПДК	Xm	Um ·	
			0301 0304	Азота диоксид (Азот (IV) окс			0,0004500		00000	1		0,001	57,8	0,7		0,001	75,6	1,1	
			0304	Азот (II) оксид (Азота оксид Углерод (Сажа)	<i>)</i>		0,0000730 0,0000210		00000	1		0,000	57,8	0,7		0,000	75,6	1,1	
			0330	Сера диоксид (Ангидрид серни	стый)		0,0000210		00000 00000	1,5. 1		0,000	50,6	0,7		0,000	66,1	1,1	
			0337	Углерод оксид	0.011,		0,0132820		00000	1		0,000 0.002	57,8 57,8	0,7 0,7		0,000 0,001	75,6 75,6	1,1	
			2754	Углеводороды предельные алифа	тическо)-	0,0019660		00000	1		0,002	57,8	0,7		0,001	75,6 75,6	1,1 1,1	
		<u> </u>		го ряда С11-С19			·			_						0,001	. 0,0	1, 1	
+		0	2 1:	26 Вытяжка гаража-стоянки (пождело)	1	1	7,8	0,32	1,667 2	1,39068		20	1,0	617,0	-	88,0	617,0	88,0	0,00
	L		Код в-ва	(пождено) Наименование вещества			Выброс, (г/с)		- (-(-)			<u> </u>							
			0301	Азота диоксид (Азот (IV) окси	1 Д)		0.0004500		ос, (т/г) 00000	F Лет 1	TO:	Cm/ПДК 0,001	Xm 99.9	Um 3 1,1	има;	Cm/ПДК 0,001	Xm 100,4	Um 1,1	
			0304				·	•				-	•			•	-		
			0304 0328	Азот (II) оксид (Азота оксид Углерод (Сажа))		0,0000730		00000	1		0,000	99,9	1,1		0,000	100,4	1,1	
			0320	Уптерод (Сажа) Сера диоксид (Ангидрид сернис	er Luis I		0,0000210 0,0000830		00000 00000	1,5		0,000	87,4	1,1		0,000	87,9	1,1	
			0337	Углерод оксид	J (DIVI)		0,0000830		00000	. 1 . 1		0,000 0,001	99,9 99,9	1,1		0,000	100,4	1,1	
			2754	Углеводороды предельные алифа	гическо)-	0,0019660		00000	1		0,001	99,9 99.9	1,1 1,1		0,001 0,001	100,4 100,4	1,1 1,1	
								-,	-	•		0,001	55,5	• •		0,001	100,4	1,1	

	-			<u>го ряда С11-С19</u>										
+	1	O	2	127 Вытяжка гаража-стоянки 1	1 7,8	0,16 0,225	11,19058	20	1,0	604,0	83,0	604,0	83,0	0,00
				(пождепо)					1			1		
			Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
			0301	Азота диоксид (Азот (IV) оксид)	0,0002080	0,0000000	1	0,001	44.5	0,5	0.001	37,7	0,6	
			0304	Азот (II) оксид (Азота оксид)	0,0000340	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
			0328	Углерод (Сажа)	0,0000130	0,0000000	1,5	0,000	38,9	0,5	0,000	32,9	0,6	
			0330	Сера диоксид (Ангидрид сернистый)	0,0000390	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
			0337	Углерод оксид	0,0076320	0,0000000	1	0,002	44,5	0,5	0,003	37,7	0,6	
			2754	Углеводороды предельные алифатическо-	0,0011070	0,0000000	1	0,001	44,5	0,5	0,002	37,7	0,6	
				го ряда С11-С19					_					
<u>_</u> +		_0_	2	128 Вытяжка мастерской поста 1	1 6,0	0,20 0,125	3,97887	20	1,0	590,0	88,0	590,0	88,0	0,00
			Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
			2908	Пыль неорганическая, содержащая менее 70% SiO2	0,0049500	0,0000000	2	0,073	25,7	0,5	0,156	16,7	0,5	
+		0		129 Вытяжка участка мойки 1 автомобилей (пождепо)	1 8,0	0,50 1,389	7,07412	20	1,0	645,0	155,0	645,0	155,0	0,00
			Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
			0301	Азота диоксид (Азот (IV) оксид)	0,0000700	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	
			0304	Азот (II) оксид (Азота оксид)	0,0000110	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	
			0328	Углерод (Сажа)	0,0000040	0,0000000	1,5	0,000	45,9	0,6	0,000	62,9	1,1	
			0330	Сера диоксид (Ангидрид сернистый)	0,0000130	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	
			0337	Углерод оксид	0,0025530	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	
			2754	Углеводороды предельные алифатическо- го ряда С11-С19	0,0003710	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	

Выбросы источников по веществам

Вещество: 2754 Углеводороды предельные алифатического ряда С11-С19

№ пл.	№ ц е х	№ ист.	Тип	Учет	Выброс (г/с)	F	· · · · · · · · · · · · · · · · · · ·	Лето			Зима	_
							Ст/ПДК	Xm	Um·(м/с)	Cm/ПДК	Xm	Um (M/c)
0	1	51	1	%	0,0142400	1	0,3258	12,54	0,5000	0.9821	6,81	0,5000
0	2	124	1 1	+	0,0019660	1	0,0016	57,82	0,6502	0,0011	75,59	
0	2_	_125	1	+	0,0019660	1	0,0016	57,82	0,6502		75,59	
_0	2	126	_ 1	+	0,0019660	1	0,0007	99,86	1,1230		100,40	
0	2	127	_1	+	0,0011070	1,	0,0013	44,46			37,66	
0	_ 2	129	1	+	0,0003710	1	0,0003	52,42			71,89	
Итог	o:				0,0216160		0,3314			0,9869		, ,,,,,,,,,,

Вещество: 2908 Пыль неорганическая, содержащая менее 70% SiO2

№ пл.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
_ 0	_1_	22	_1	%	0,0112000	3	0,2045	18,53			9,38	
0	1_	_23_	_1	_%	0,0040000	3	0,1079	15,68			7,49	
0_	1	24	1_	_ %	0,0040000	3	0,1079	15,68	0,5000		7,49	
0	1	25	_1_	%	0,0040000	3	0,1079	15,68	0,5000		7,49	
0	1	_26	_1_	_%	0,0040000	3	0,1079	15,68	0,5000		7,49	
0	1	27	1	%	0,0040000	3	0,1079	15,68	0,5000		7,49	
0	1	28	1	%	0,0028000	_3	0,8001	5,70	0,5000		3,46	
0	1_	29	_ 1	%	0,0396300	3	11,3236	5,70	0,5000	26,5686	3,55	0,5220
0	1	_30_	1	%	0,0735000	3	1,6179	17,10	0,5000	4,6158	9,75	
0	1	31	1	%	0,0735000	3	1,3423	18,53	0,5000	0,9442	24,53	
0	1	32	_1	%	0,0200000	3	1,4494	13,77	1,2083	1,4494	13,77	1,2083
0	_1	36	_ 1	_%_	0,0001481	3	0,0027	18,53	0,5000	0,0048	14,34	
0	1	37	1	%	0,0001481	3	0,0164	8,55	0,5000	0,0185	8,57	0,7875
0	_2	128	_ 1 _	+	0,0049500	2	0,0726	25,65	0,5000	0,1563	16,75	
Итого):				0,2458762		17,3689			38,8322		5,3202

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	едельно Допу Концентрац	*Поправ. коэф. к ПДК/ОБУ В	Фоновая концентр.		
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
	Углеводороды предельные алифатического ряда C11-C19	ПДК м/р	1,0000000	1,0000000	1	Нет	Нет
2908	ыль неорганическая, содер- кащая менее 70% SiO2	ПДК м/р	0,3000000	0,3000000	1	Нет	Нет

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически

Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области

Расчетные площадки

Nº	Тип	Полн	юе описа	ние плоц	ние площадки		Ш; (л		Высота, (м)	Комментарий
		Коорді серед 1-й стор	ины	Коорд серед 2-й стор	цины		•	•		
		Х	Y	XY			X	Y		
1	Заданная	-2000	-2000 -162		2000 -162		50 50		2	-

Расчетные точки

Nº	_	яты точки и)	Высота (м)	Тип точки	Комментарий
	X	Υ	\····		
4	533,00	405,00	2	на границе С33	
_ 5	840,00		2	на границе СЗЗ	
6	1010,00	-162,00	2	на границе С33	
_ 7	920,00	_542,00	2	на границе СЗЗ	
8	533,00	-600,00	. 2	на границе СЗЗ	
9	233,00	-468,00	2	на границе СЗЗ	
10	-42,00	-162,00	2	на границе СЗЗ	
11	-19,00	404,00	2	на границе СЗЗ	
1	966,00	114,00	2	на границе жилой зоны	
2	1387,00	-96,00		на границе жилой зоны	
3	638,00	-714,00		на границе жилой зоны	

Результаты расчета по веществам (расчетные точки)

Вещество: 2754 Углеводороды предельные алифатического ряда С11-С19

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)		Напр. ветра	Скор. ветра	Фон (д. ПДК)	Фон до искл.	Тип точки
10	-42	- 162	2	7,5e-3	41	5,00	0,000	0,000	3
11	-19	404	2	6,8e-3	146	5,00	0,000	0,000	3
4	533	405	2	4,5e-3	228	.5,00	0,000	0,000	3
5	840	173	2	3,8e-3	257	0,70	0,000	0,000	3
1	966	114	2	3,1e-3	268	0,90	0,000	0,000	4
9	233	-468	2	3,0e-3	356	5,00	0,000	0,000	3
6	1010	-162	2	2,2e-3	292	0,80	0,000	0,000	3
8	533	-600	2	1,9e-3	335	0,70	0,000	0,000	3
3	638	-714	2	1,6e-3	332	0,70	0,000	0,000	4
7	920	-542	2	1,5e-3	314	0,70	0,000	0,000	3
2	1387	-96	2	1,4e-3	280	0,80	0,000	0.000	4

Вещество: 2908 Пыль неорганическая, содержащая менее 70% SiO2

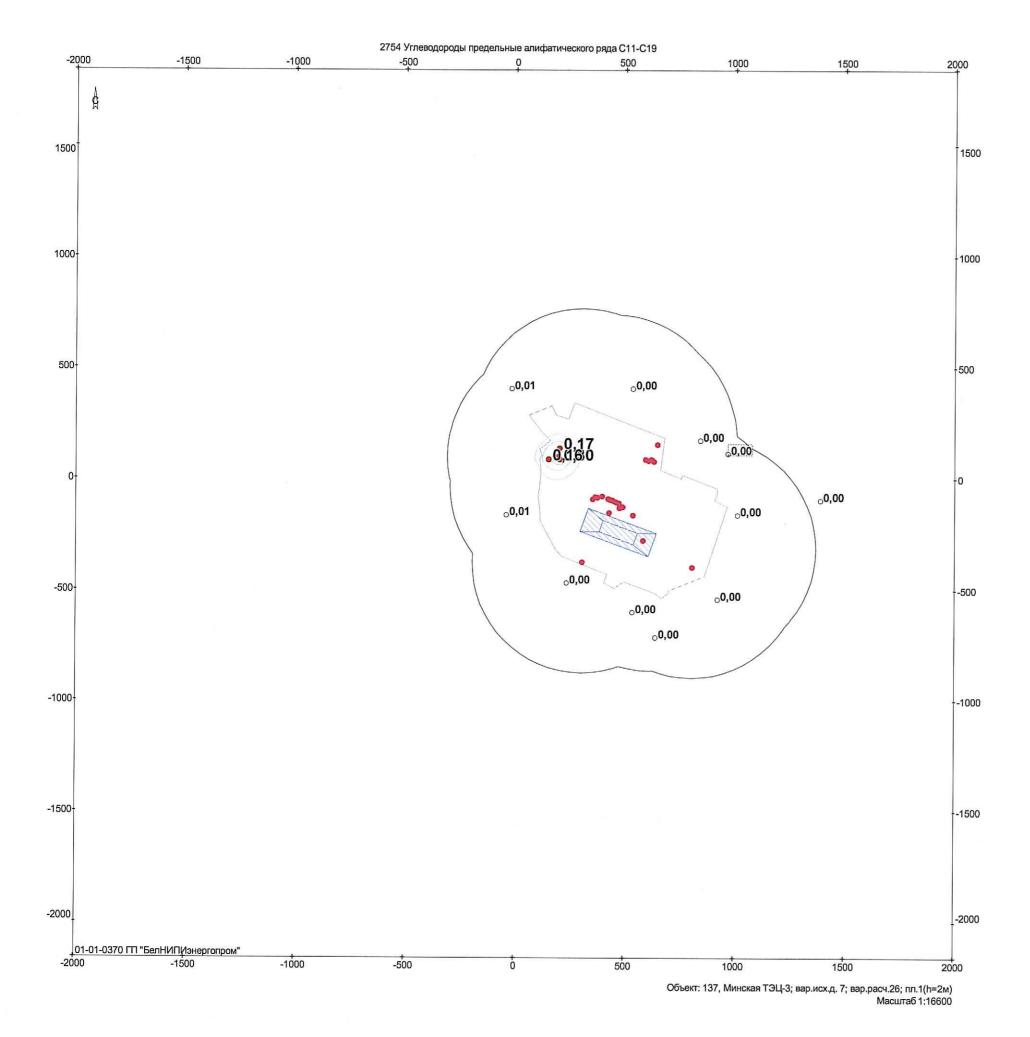
Nº	Коорд	Коорд	Высота	Концентр.	Напр.				Тип
	Х(м)		(M)	(д. ПДК)	ветра	• 1	* - 1		точки
10	42	162	2	0,12	80	5,00			3
9	233	_468	2	0,11	21	5,00	0,000		3
_ 7	920	-542	2	0,10	320				3
<u>5</u>	840	173	2	0,08	240		0,000		3.
4	533	405	2	0,08	197	5,00	0,000	0,000	3
8	533	-600	2	0,07	344	5,00	0,000	0,000	3
6	1010	-162	2	0,06	277	5,00	0,000		3
1	966	114	2	0,06	251	5,00		0,000	
11		404	2	0,05	140	5,00		0,000	3
3	638	-714	2	0,04	339	5,00	0,000	0,000	4
2	1387	-96	2	0,02	271	5,00	0,000	0,000	- 4

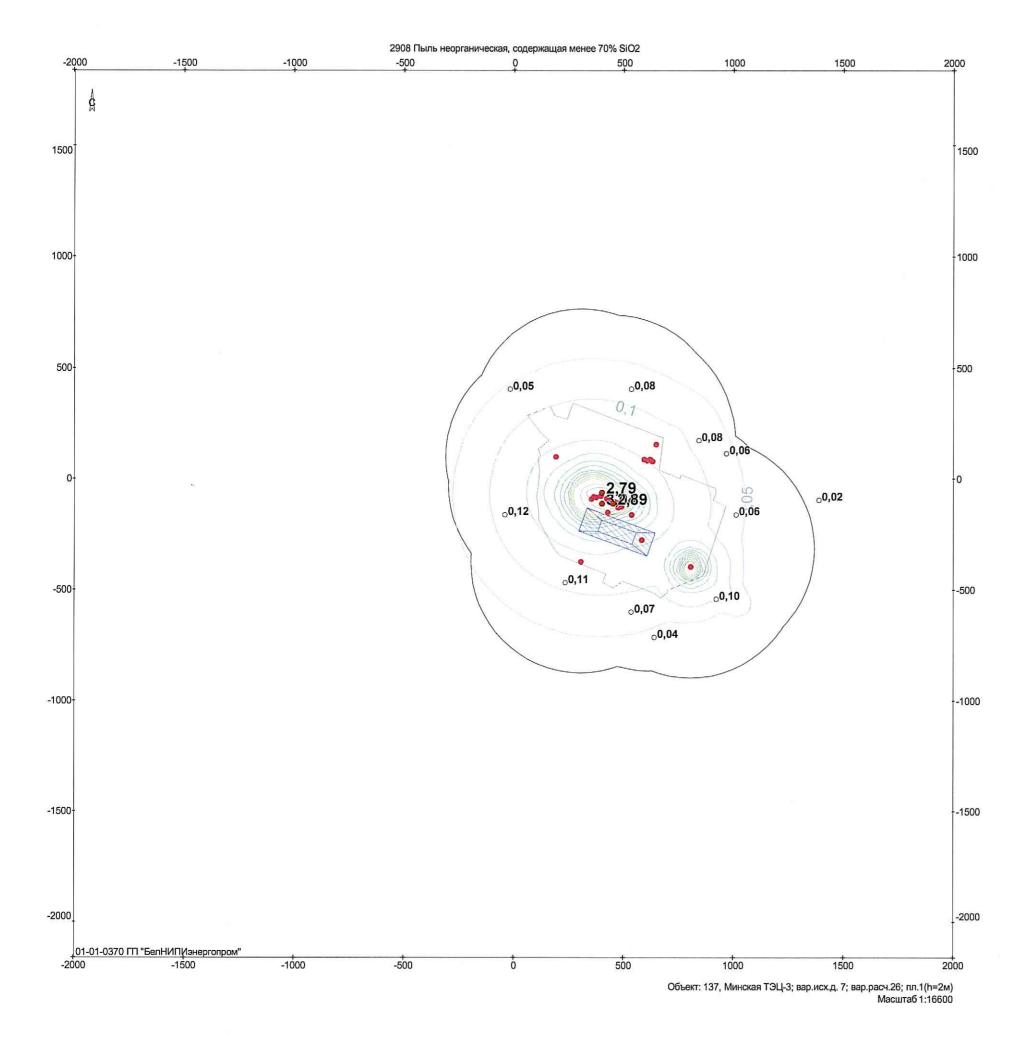
Максимальные концентрации и вклады по веществам (расчетные площадки)

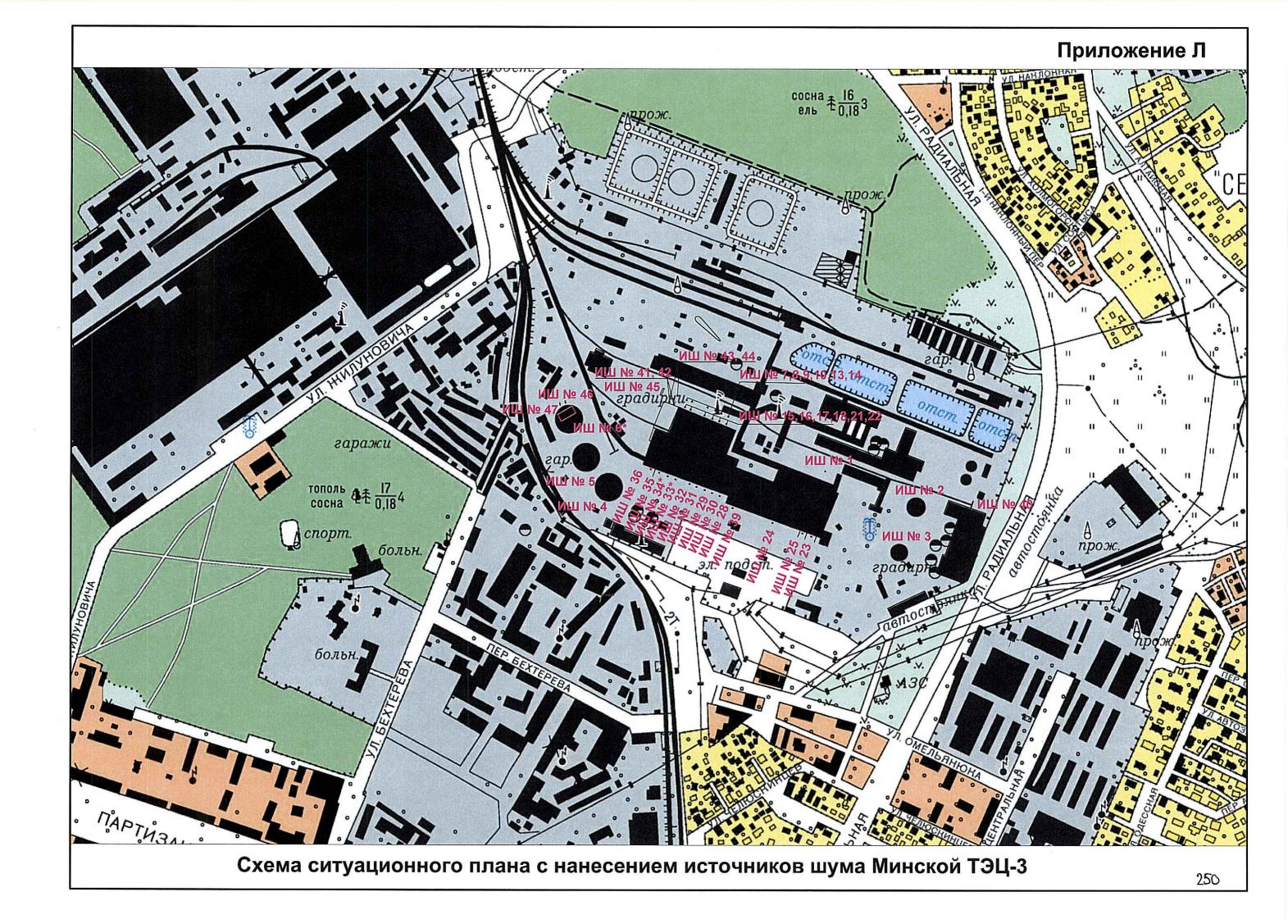
Вещество: 2754 Углеводороды предельные алифатического ряда С11-С19

Площадка: 1

Поле максимальных концентраций


Коорд Х(м)	Коорд Ү(м)	Концен ПДІ		Напр.	ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
200	88		0,30		317	0,50	0,000	
· · · · · · · · · · · · · · · · · · ·	Площадка 0	<u> </u>	Исто <u>5</u>	1	Вкла	двд. ПДК 0,30	Вклад % 100,00	
200	<u>13</u> 8		<u>0,1</u> 7		196	0,70	0,000	0,000
	Площадка 0	1	Исто 5	1	Вкла	двд. ПДК 0,17	Вклад % 100,00	
150			0,16		73	0,70	0,000	0,000
	Площадка 0 0 0	цех 1 2 2	Источ 5 12 12	1 ?5	Вкла,	д в д. ПДК 0,16 1,0e-4 1,0e-4	Вклад % 99,77 0,06 0,06	


Вещество: 2908 Пыль неорганическая, содержащая менее 70% SiO2


Площадка: 1

Поле максимальных концентраций

Коорд Х(м)	Коорд Ү(м)	Концен ПДІ		Напр.ветра	Скор.ветра	Фон (д. ПДК)	Фон до исключения
400	112		3,04	43	0,90	0,000	0,000
	Площадка	Цех	Исто	чник Вкла	двд. ПДК	Вклад %	
	0	1	29		2,99	98,20	
	0	1	27	7	0,04	1,25	
	0	1	26		9,8e-3	0,32	
450	112		2,89	305	0,70		0,000
	Площадка	ι Цех	Источ	чник Вкла	двд. ПДК	Вклад %	
	0	1	29	9	2,19	75,76	
	0	1	30		0,32	11,18	•
	0	1	<u> 3</u>		0,23	7,85	
400			2,79	141	0,90	0,000	0,000
	Площадка	Цех	Источ	ник Вкла	двд. ПДК	Вклад %	<u> </u>
	0	1	29	9	2,60	93,04	
	0	1	27		0,06	2,03	
	0	1	26	3	0,04	1,43	

Приложение М на листах 251 - 264

М.1 Результаты расчетов шумового воздействия от источников шума Минской ТЭЦ-3

Эколог-Шум. Модуль печати результатов расчета Соругіght © 2006-2014 ФИРМА "ИНТЕГРАЛ"

Источник данных: Эколог-Шум, версия 2.3.1.3868 (от 04.03.2015) Серийный номер 01-01-0370, РУП "БелНИПИэнергопром"

1. Исходные данные

1.1. Источники постоянного шума

N	Объект	Коо	рдинаты то	очки	Простран ственный угол	Уровни зв		о давле: к со сре							виых	L а.экв	В расчете
		X (M)	Y (M)	Высота подъема (м)		Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000		Ē
001	Существующая ДКС	611.00	-250.50	1.50	12.57	1.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	TYe
006*	Вентиляторная градирия проектируемая	170.50	-193.50	9.00	12.57	1.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	Да
007	Дымосос Д-21	448.00	-160.50			0.0	84.0	84.0	90.0	87.5	85.5	86.5	87.5	84.5	75.8	92.7	Да
008	Дымосос Д-21	436.00	-154.50	0.00	12.57	0.0	84.0	84.0	90.0	87.5	85.5	86.5	87.5	84.5	75.8	92.7	Да
009	Дымосос Д-21	425.80	-150.00		12.56	0.0	84.0	84.0	90.0	87.5	85.5	86.5	87.5	84.5	75.8	92.7	Да
010	Дымосос Д-21	412.50	-146.00	0.00	12.57	0.0	84.0	84.0	90.0	87.5	85.5	86.5	87.5	84.5	75.8	92.7	Да
013	Дымосос Д-21	387.00	-137.00		12.56	0.0	84.0	84.0	90.0	87.5	85.5	86.5	87.5	84.5	75.8	92.7	Да
014	Дымосос Д-21	377.50	-133.80		12.56	0.0	84.0	84.0	90.0	87.5	85.5	86.5	87.5	84.5	75.8	92.7	Да
015	Вентилятор ВДН-26	444.00	-173.50		12.56	0.0	101.5	101.5	104.0	103.0	104.0	104.0	101.5	96.0	90.0	108.1	Да
	Вентилятор ВДН-26	432.70	-169.00		12.56	0.0	101.5	101.5	104.0	103.0	104.0	104.0	101.5	96.0	90.0	108.1	Да
	Вентилятор ВДН-25	420.50	-164.80		12.56	0.0	108.0	108.0	109.0	111.0	110.0	104.0		102.0	93.0	112.9	Да
	Вентилятор ВДН-25	408.00	-159.00		12.56	0.0	108.0	108.0	109.0	111.0	110.0		105.0	102.0	93.0	112.9	Да
021	Вентилятор ВДН-25	384.50	-150.00		12.57	0.0	108.0	108.0	109.0		110.0		105.0	102.0		112.9	Да Да
	Вентилятор ВДН-25	375.00	-146.50		12.57	0.0	108.0	108.0	109.0		110.0			102.0	93.0	112.9	Да
023	Трансформатор ГТ1	586.00	-356.50		12.57	0.0	103.0	106.0	108.0		105.0	102.0		99.0	95.0	109.0	Да
	Трансформатор ПТ1	524.50	-335.00		12.57	0.0	100.0		105.0	106.0	102.0	99.0	98.0	96.0	92.0	106.0	Да
025	Трансформатор 21Т	574.50	-353.00		12.57	0.0	82.0	85.0	87.0	88.0	84.0	81.0	80.0	78.0	74.0	88.0	Да
028	Трансформатор Р11Т	433.50	-292.00		12.57	0.0	82.0	85.0	87.0	88.0	84.0	81.0	80.0	78.0	74.0	88.0	Да
029	Трансформатор С5Т	408.50	-281.50		12.57	0.0	92.0	95.0	97.0	98.0	94.0	91.0	90.0	88.0	84.0	98.0	Да
030	Трансформатор Р6Т	420.50	-286.50		12.57	0.0	82.0	85.0	87.0	88.0	84.0	81.0	80.0	78.0	74.0	88.0	Да
031	Трансформатор С6Т	394.50	-277.00		12.57	0.0	89.0	92.0	94.0	95.0	91.0	88.0	87.0	85:0	81.0	95.0	Да
032	Трансформатор Р7Т	383.50	-272.00		12.57	0.0	82.0	85.0	87.0	88.0	84.0	81,0	80.0	78.0	74.0	88.0	Да
033*	Трансформатор С7Т	360.00	-263.50		12.57	0.0	101.0	104.0	106.0	107.0	103.0	100.0	99.0	97.0	93.0	107.0	Да
034*	Трансформатор Р8Т	347.00	-259.00		12.57	0.0	83.0	86.0	88.0	89.0	85.0	82.0	81.0	79.0	75.0	89.0	Да
035	Трансформатор С8Т	333.00	-253.00		12.57	0.0	100.0	103.0	105.0	106.0	102.0	99.0	98.0	96.0	92.0	106.0	Да
036	Трансформатор Р9Т	318.50	-248.00		12.57	0.0	83.0	86.0	88.0	89.0	85.0	82.0	81.0	79.0	75.0	89.0	Да
039	Трансформатор, проектируемый по АП	456.50	-310.50		12.57	0.0	100.0	103.0	105.0	106.0	102.0	99.0	98.0	96.0	92.0	106.0	Да
040	ГРП	877.00	-298.00		12.57	0.0	87.0	90.0	92.0	93.0	89.0	86.0	.85.0	83.0	79.0	93.0	Да
041 ,	Дутьевой вентилятор проектируемого котла ст.№10	348.50	-136.50		12.57	0.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	Да
042	Дутьевой вентилятор проектируемого котла ст.№10	356.50	-139.50	0.00		0.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	Да

043 Дымосос проектируемого котла ст.№10	7 000 00	14- 4-														
Control of the Contro	362.00	127.00	0.00	12.57	0.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	Да
044 Дымосос проектируемого котла ст.№10	351.00	-123.50	0.00	12.57	0.0	74.0		79.0	80.0	76.0				-		- 2"
046 Контейнер с ЧРЭП											73.0	72.0	70.0	66.0	_80.0	да
	163.00	-143.00	0.00	12.57	1.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	Да
047 Контейнер с ЧРЭП	151.50	-148.50	0.00	12.57	1.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	
				,	1 1.0	7 7.0	17.0	17.0	00.0	70.0	73.0	72.0	70.0	<u> 0</u> 0.0	80.0	Да

N	Объект	Координат		Координат	гы точки 2	Ширина (м)	Высота (м)		Простран ственный угол							чае R = частот			вных	L а.экв	В расчете	Сторон
		X (M)	Y (m)	X (M)	У (м)					Дистанция замера (расчета) R (м)	31.5	63	125	250	500	1000	2000	4000	8000			<u> </u>
002	Градир ня № 1	749.00	-304.21	788.58	-304.21	39.58	50.50	0.00	12.56	0.0	79.4	74.9	70.5	66.0	67.5	71.9	68.8	62.3	52.8	75.0	Да	1234
003	Градир ня № 2	722.00	-379.21	761.58	-379.21	39.58	50.50	0.00	12.56	0.0	79.4	74.9	70.5	66.0	67.5	71.9	68.8	62.3	52.8	75.0	Да	1234
004	Градир ня № 3	266.50	-279.50	221.50	-279.50	45.00	4.00	0.00	12.56	0.0	82.0	77.5	73.1	68.6	70.1	74.5	71,4	64.9	55.4	77.5	Да	1234
005	Градир ня № 4	167.00	-240.50	212.00	-240.50	45.00	4.00	0.00	12.56	0.0	82.0	77.5	73.1	68.6	70.1	74.5	71.4	64.9	55.4	77.5	Да	1234
045	Модуль ная	335.54	-118.56	337.80	-119.62	12.00	2.50	0.00	12.57	1.0	74.0	77.0	79.0	80.0	76.0	73.0	72.0	70.0	66.0	80.0	Да	1234
	компре ссорная																					

1.2. Источники непостоянного шума 1.3. Препятствия

N	Объект	Координат	ъ точки 1	Координат	ы точки 2	Ширина (м)	Высота (м)	Высота подъема (м)	Коэ		ент звуг еднегео						ax co	В расчете
-		X (M)	Y (M)	Х (м)	Y (м)				31.5	63	125	250	500	1000	2000	4000	8000	1
021	Стенка	596,12	-358. <u>5</u> 4	592.70	-367.94	0.25	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
022	Стенка	580.12	-353.44	576.70	-362.84	0.25	3.00	0.00		0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
023	Стенка	568.62	-350.05	564.73	-359.26	0.25	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	
024	Стенка	520.62	-331.55	516.90	-340.83	0.25	3.00	0.00	0.01	0.01	0.01	0.01	0.01	_				+- ' `
025	Насосная	159.12	-158.00	165,62	-169.26	28.00	13.36	0.00						0.02	0.02	0.02	0.02	
028	Стенка	325.59	-247.03	321.32	-258.78				0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
030	Земляная насыпь					0.20	3.00	0.00	0.15	0.15	0.15	0.19	0.29	0.28	0.38	0.46	0.46	Да
550	Companion Intentity	566.27	-452.17	641.45	-479.53	15.00	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	Да

N	Объект	Координаты точек (Х, Ү)	Высота (м)	Высота подъема (м)	Коэ		ент звуг еднегео							В расчете
001	Current				31.5	63	125	250	500	1000	2000	4000	8000	1
001	Существующий гл.корпус	(461, -242), (525, -266), (536, -237), (626, -271), (632, -253), (639, -255), (630, -284), (635, -286),	3.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да

						,								
		(604, -360),												
		(446, -303),												
		(448, -291),												
		(443.1, -289)												
002	Объединенно-вспомогательный корпус	(316, -78),	10.00	0.00	0.15	0.15	0.15	0.19	0.29	0.28	0.38	0.46	0.46	Да
	• •	(325, -51),												
		(490, -115),												
		(495, -100),								ĺ				
]		(515, -108),				i								
		(508, -124),				1								
		(507, -121),												
		(493, -145)	- I								Į.			
004	Здание пиковой котельной	(258, -336),	20.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
004	Здание пиковой котельной	(275, -343),				1							i	
		(273, -346),											1 '	
		(342, -375),					ŀ					ļ		
		(335, -391),					Į.					1	·	
		(250, -355)										1		
005		(644, -237),	6.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
005	Служебно-бытовой корпус	(713, -263),	0.00	0.00	0.02	0.05	0.52	0.00	*	"	****	****		
		(704.3, -283),						1		1				
	, ,	(697, -279),				1		ł				٠.		
		(698, -275),	j			i				·				
		(638, -252)									ļ			
			8.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
006	Служебно-бытовой корпус	(714, -261),	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Д.
		(721, -263),					ł							
		(702, -309),			ļ	i								
		(707, -311),	1	']	1								
		(704, -319),				1							1	
		(684, -311),						į		l		-	ł	
		(687, -304),]	1		ł	i	
		(694, -307)			0.04	-		0.01	0.01	0.00	- 0.00	0.00	0.00	
007	Административно-бытовой корпус	(716, -478),	13.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
		(778, -449),					ŀ					l		
		(784, -460),	1									l		
ļ		(743, -480),			i									
		(744, -483),				1		!		!				
		(723, -492)				 	<u> </u>				l	 	0.05	
008	Здание водогрейной котельной	(612, -123),	20.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
		(705, -159),			!	1					1	1	ł	
		(697, -179),			i	1					1	1	i	
		(635, -155),				ļ .					1	1	1	
		(630, -168),				1					1			
		(599, -155)										<u> </u>		
009	Существующее здание гл. корпуса	(301, -238),	23.60	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
		(315, -200),									1			
ľ		(456.9, -251.5),]	1				
		(443, -289)								<u> </u>				
0i0	Существующий гл. корпус	(315, -199.8),	31.40	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
J.70		(322.5, -178.5),				1								
İ		(465, -231),				1								
		(457, -251.4)	1 1] .					<u> </u>	<u></u>	<u> </u>	
011	Пристройка	(322, -178),	26.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
V11	Trhnerponna	(339.5, -135),						ļ				}	Į.	

		(364.7, -144.5),						ī				1	1	
		(345.9, -187)				1								
012	Существующий гл.корпус	(346, -187),	47.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
V12	Существующий гл.корије	(365, -145),	77.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.03	0.00	0.00	Да
		(461, -182),						ŀ	ľ	'				
		(445, -223)				Į.				'				
013	XBO	(808, -388),	13.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
013	ABO	(812, -389),	13.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.00	0.00	да
		(834, -328),								'				
		(810, -320),							1					
į		(818, -298),	1					i	<u> </u>	ļ '				
		(881, -320),	1			İ	l '	 	 	 				
		(874, -340),					ĺ '	l '	i '	i '				
		(881, -344),	1 1				1 '	l '	i '	i '		İ	1	
		(850, -429),					l '	i '	 	 				
i		(841, -435),	1 1				1 '	l '	i '	i '				
		(798, -419)				ĺ	1 '	 	i '	i '				
014	Склады	(216, -52),	3.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
V. T	-	(223, -54),] 3.00	0.00	0.03	0.05	0.05	0.05	0.05	0.04] 0.05	0.00	0.00	""
	,	(226, -47),				1	l '	'	1 '	,	1			
		(240, -54),	1				l '	'	1 '	1 '				
ľ		(238, -58),	1 1				l '	'	1 '	1 '				
		(254, -66),	1				1 '	'	1 '	1 '				
		(242, -95),					1 '	'	1 '	1 '				
		(212, -82),				i	1 '] '	1 '	1 '				
		(214, -76),					1 '	1	l '	1 '				
		(207, -73)	1				l '	!	1 '	1 '				
015	Препятствие - полигон	(125, -121),	9.00	0.00	0.03	0.03	0.03	0.03	0.03	0.04	0.05	0.06	0.06	Да
	Tapelo Television	(157, -74),	/.00	0.00	0.02	0.05	0.05	0.05	0.05	0.01	0.05	0.00	0.00	~"
		(163, -79),					,	'	1 7	l' '				ļ
-		(158, -86),	1			1	ı '	1 '	1 '	1 '				ŀ
		(162, -89),				ł	,	!	1 '	1 '				
		(135, -128)					,	('	1 '	1 '				
016	Препятствие - полигон	(593, -204),	7.00	0.00	0.15	0.15	0.15	0.19	0.29	0.28	0.38	0.46	0.46	Да
		(599, -188),		5,55	0.10	0.12	5.25	""	5,2,5	0.20	0.20	0710	0.10	
		(706, -228),					, '	ļ !	i '	1 '				
	•	(712, -211),	j				. '	l '	, '	1 '				
		(729, -218),					'	'	1 '	1 '				
		(746, -177),					ı '	l '	('	l '				
		(764, -184),					!	i '	i '	1 1				
		(749, -223),					, '	i '	i '	'	-			
		(777, -234),		i			ı '	i '	i '	1 1	1			
		(770, -250),	1				, ,	ı '	i '					
		(765, -248),					, '	'	1 '					
		(758, -266)	1 1				, '	l '	1 '					
026	Препятствие - полигон	(239, -341),	4.00	0.00	0.15	0.15	0.15	0.19	0.29	0.28	0.38	0.46	0.46	Да
		(244, -328),	"1	,										'`
		(257, -335),					, ,	!	i '					
		(252, -347)		ļ			, /	1 1	í '					
027	ЗРУ	(435, -451),	4.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0:02	Да
		(441, -435),												'`
		(470, -445),	1				, ,		1 1		[
	a A	(463, -463)	1					!	, !	. !	[1
							٠.	1 .	1	1				

		(112, 33),												
		(97, -82),			-	1								
		(104, -182),			l .	{								
		(176, -327),			l									
		(306, -454),			l									- 1
		(339, -533),			l									1
		(357, -654),			l									i
		(288, -655),			!									}
		(238.5, -454),			l									
		(-37, -484),			ļ									i
		(39, -290),		1	1				;			ŀ		1
		(-110, -41)			1							ļ		
031	Здание	(505, -581.5),	6.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	Да
***		(523, -525.5),			1									
		(569, -545.5),										l		
1		(554, -594.5)											_	
032	A3C	(701, -616),	3.00	0.00	0.01	0.01	0.01	0.01	10.0	0.02	0.02	0.02	0.02	Да
		(703, -602),										l		
		(709, -600),										l ·		
		(707, -592),										l	Ì	
		(718, -588),	ļ			ľ						l		
		(724, -605)												
033	Административные здания	(428.9, -599.9),	7.00	0.00	0.15	0.15	0.15	0.19	0.29	0.28	0.38	0.46	0.46	Да
	•	(647.1, -665.7),			l				1			!	1	
		(633.3, -705.3),]		l						']		
l		(424.8, -618.7)												

N	Объект	Координаты точек (Х, У,	Ширина	Высота	Коэ	ффици	нт звуг	копогле	ощения	 I а, в ок	тавных	полос	ax co	В
•	••	Высота подъема)	(M)	(M)		ср	еднегео	метрич	ческим:	и часто	тами в	Γα		расчете
		,	. ` ′	, ,	31.5	63	125	250	500	1000	2000	4000	8000]
003	Забор 	(162, 328, 0), (180, 289, 0), (241, 269, 0), (268, 342, 0), (661, 40, 0), (757, 2, 0), (762, 18, 0), (919, -44, 0), (919, -69, 0), (906, -95, 0), (963, -133, 0),	0.10	2.50	_		0.15		0.29		0.38		0.46	Да
		(852, 430, 0), (744, 480, 0), (745, 484, 0), (700, -503, 0), (702, -511, 0), (667, -538, 0), (639, -518, 0), (496.5, -464, 0), (459, -490, 0), (402, -468, 0),												

	(420, -429, 0),	1								
]	(343, -401, 0),	1		l .		i				
i e	(219, -346, 0),	ľ							ļ	1
,	(213, -350, 0),		1		•	ŀ		li		- 1
<u> </u>										

1.4. Снижение шума. Влияние зеленых насаждений

N	Объект	Координаты точек (Х, Y)	Высота (м)	Высота подъема (м)	В расчето
001	Лес	(-132, -58), (26, -279), (-61, -472),	15.00	0.00	Да
002		(-256, -151) (261.5, 345), (238, 279), (182.5, 298), (156, 369.5), (277.5, 435.5), (521, 404.5), (852.5, 118.5), (809, 10.5), (759, 34), (750.5, 16.5), (677.5, 48.5), (692, 191.5)	15.00	0.00	Да
	Аллея	(726.5, -518), (680.9, -654.7), (677, -653.9), (723.4, -516.4)	8.00	0.00	Да
	Аллея	(713, -524), (671, -647.5), (667.5, -647.5), (708.5, -525)	8.00	0.00	Да
005	Насаждения	(300, -387), (414, -431), (411, -439.5), (296, -394.5)	8.00	0.00	Да

1.5. Снижение шума. Влияние промышленных зон

N	Объект	Координаты точек (Х, Ү)	Высота (м)	Высота подъема (м)	В расчете
001	Область влияния промзоны	(22, 425), (39, 332), (33, 324), (-19, 302), (-5, 280), (-6, 266), (31, 89),	8.00	0.00	Да

			_	
1		(-236, -100),		1
		(-140, 173)		i i
002	Область влияния промзоны		0.0	0 Да
Ħ		(425, -583.5),		
		(405.5, -539),		
i		(408, -491.5),		i i
1 .		(435.5, -495.5),		1 1
· L		(471.5, -569.5)		1 1

2. Условия расчета 2.1. Расчетные точки

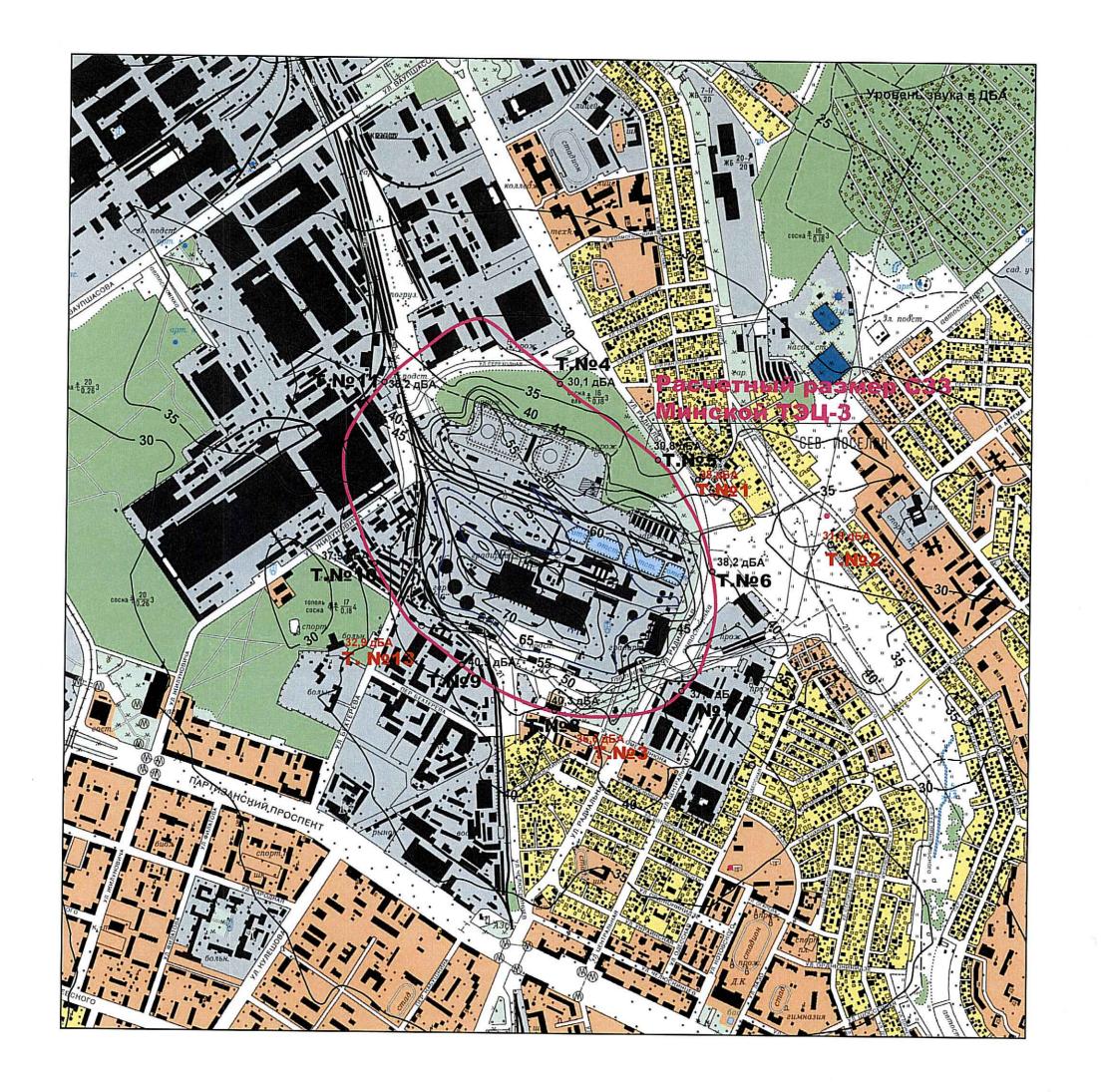
N	Объект	Коој	динаты т	рчки	Тип точки	В
		Х (м)	Y (м)	Высота		расчете
i	•			подъема		
001				(M)		
	Расчетная точка	966.00	114.00	1.50	Расчетная точка на границе жилой зоны	Да
	Расчетная точка	1387.00	-96,00	1.50	Расчетная точка на границе жилой зоны	Да
	Расчетная точка	638.00	-714.00	1.50	Расчетная точка на границе жилой зоны	Да
	Расчетная точка	533.00	405.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
$\overline{}$	Расчетная точка	840.00	173.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
	Расчетная точка	1010.00	-162.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
	Расчетная точка	920.00	-542.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
	Расчетная точка	533.00	-600.00	1.50	Расчетная точка на границе санитарно-защитной зоны	
009	Расчетная точка	233.00	-468.00		Расчетная точка на границе санитарно-защитной зоны	Да
<u>010</u>	Расчетная точка	-42.00	-162.00	1.50		Да
011	Расчетная точка	-19.00	404.00	1.50	Расчетная точка на границе санитарно-защитной зоны	Да
013	Расчетная точка	-112.00			Расчетная точка на границе санитарно-защитной зоны	Да
		-112.00	<u>-415.00</u>	1.50	Расчетная точка пользователя	Да

2.2. Расчетные площадки

N	Объект	Координаты точки 1	Координаты	точки 2	· I	Высота	Шаг сет	ки (м)	В
					(M)	подъема (м)			расчете
001		X (M) Y (M)		Y (M)	<u>'</u>		Х	Y	
001	Расчетная площадка	1000.00	2000.00	-100.00	3000.00	1.50	100.00	100.00	

- Вариант расчета: "Вариант расчета по умолчанию"
 3. Результаты расчета (расчетный параметр "Звуковое давление")
 3.1. Результаты в расчетных точках

Точки типа: Расчетная точка пользователя


Doggan								- -					
Расчетная точка	Координаты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	L а.экв	Lа.макс
Į.		(M)					*	2000	2000	7000	0000	La.3Kb	Lamant
N Название	X (M) Y (M)	()	,			ľ							i i
013 Расчетная точка	112.00 415.00	1.50											<u> </u>
013 Facqethan toqka	112.00415.00	1.50	38.9	39.8	38.9	37.1	31,1	25.3	16,2	0		32.90	
												32.70	

Точки типа: Расчетная точка на границе санитарно-защитной зоны

	Расчетная точка	Координа		1 1		63	125	250	500	1000	2000	4000	8000	L а.экв	La. макс
N	Название	X (M)	Y (M)	(M)											
004	Расчетная точка	533.00	405.00	1.50	42.8	40.7	37.3	34.2	28.5	21.6	7.9	0	0	30.10	
005	Расчетная точка	840.00	173.00	1.50	42.8	40.8	37.5	34.8	29.1	22,8	13,1	4.3		30.80	
006	Расчетная точка	1010.00	-162.00	1.50	44.3	42.7	41.9	41.1	36.5	31.8	27	19.4	8.4	38.20	
007	Расчетная точка	920.00	-542.00	1.50	41.3	42.1	42	40.9	35.9	31.5	26.8	19.2	0.1	37.90	
800	Расчетная точка	533.00	-600.00	1.50	44.8	45.2	44.5	43.2	38.3	34.1	29.2	22.2	7.8	40.30	
009	Расчетная точка	233,00	-468.00	1.50	43	43.2	42,9	42,2	38.9	35.7	31.2	24.3	9.2	40.30	
010	Расчетная точка	-42,00	-162.00	1.50	39.4	39.5	39.5	39.4	36.3	32.8	27.5	18.5	9.2	37.90	
011	Расчетная точка	-19.00	404.00	1.50	44.6	42.9	40.4	38.5	33.9	28.6	20.8	5.7	0	35.20	

Точки типа: Расчетная точка на границе жилой зоны

	Расчетная точка	Координа	ты точки	Высота	31.5	63	125	250	500	1000	2000	4000	8000	L а.экв	La. макс
L.	 _			(M)											
N	Название	X (M)	Y (M)												
001	Расчетная точка	966.00	I 14.00	1.50	44.5	42.8	41.5	39.8	36.6	32.8	25.7	12,3	0	38.00	
002	Расчетная точка	1387.00	-96.00	1.50	40.4	38.6	37.2	35.8	30.6	24.5	15.3	1.1	0	31.90	-
003	Расчетная точка	638.00	-714.00	1.50	41.3	41.6	40.8	39.6	34.9	30.5	24.9	15	0	36,60	

M.2 Расчет шума, проникающего из помещения на территорию через ограждающие конструкции

Расчет шума, проникающего из помещения на территорию (версия 1.6)

Программа реализует методики: СНиП 23-03-2003. Защита от шума.

Фирма "Интеграл" 2011-2012 г. Пользователь: РУП "БелНИПИЗнергопром" Регистрационный номер: 01-01-0370

Источник шума: Градирня № 1

Источники шума внутри помещения:

Уровни звукового давления, дБ (по октавным полосам со среднегеометрическими частотами, Гц): Название 31.5 63 125 250 500 1000 2000 4000 8000 La макс. Свободное падение воды 87.5 87.5 87.5 87.5 93.5 98.5 98.5 99.5 (дистанция замера: 0 м; расстояние до окна или кожуха (г): 2 м; Коэффициент, учитывающий влияние ближнего поля (х): 0;Пространственный угол: 12.56)

Мощности источников, дБ (по октавным полосам со среднегеометрическими частотами, Гц): 31.5 63 125 250 500 1000 2000 4000 La макс. Свободное падение воды 87.5 87.5 87.5 87.5 93.5 98.5 98.5 99.5

Состав и звукоизоляция ограждающей конструкции (окна), дБ (по октавным полосам со среднегеометрическими частотами. Гп):

Название	31.5	63	125	250	500	1000	2000	4000	8000
Жалюзи (общ. пл. элемента: 320 кв. м)	15.6	20.1	24.5	29	33.5	31	34.1	41.6	

Звукопоглощение ограждающих конструкций (по октавным полосам со среднегеометрическими частотами, Гц):

| Название | 31.5 | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 |
| Поверхность (6120 кв. м) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 |

Эквивалентные площади звукопоглощения конструкций, расположенных в помещении, м 2 (по октавным полосам со среднегеометрическими частотами, Γ ц)

Название 31.5 63 125 250 500 1000 2000 4000 8000

Результаты расчета

1. Расчет ограждающей конструкции (окна или кожуха): (R)

 $R=10*lg(S/\Sigma(S_i/10^{0.1*Ri}))$

S — суммарная площадь ограждающей конструкции, м 2 S=320 м 2

 S_i – площадь і-той части ограждающей конструкции, м²

R_i – изоляция воздушного шума і-той частью ограждающей конструкции, дБ

Название	31.5	63	125	250	500	1000	2000	4000	8000
Звукоизоляция ограждающей	15.6	20.1	24.5	29	33.5	31	34.1	41.6	49.1
конструкции (R)			İ	i		•			70.,

2. Расчетные характеристики помещения

Эквивалентные площади звукопоглощения A (м²) в октавных полосах со среднегеометрическими частотами в Гц:

 $A=\Sigma(a_i*S_i)+\Sigma(A_i*n_i)$

аі - коэффициент звукопоглощения і-й ограждающей поверхности

 S_i – площадь і-й ограждающей поверхности, M^2

 A_{j} – эквивалентная площадь звукопоглощения j-го штучного поглотителя, M^{2}

 n_{j} – количество j-ых штучных поглотителей, шт.

Название	31.5	63	125	250	500	1000	2000	4000	8000
Эквивалентные площади звукопоглощения (A)	61.2	61.2		61.2	61.2	122.4	122.4		122.4

Средние коэффициенты звукопоглощения a_{cp} в октавных полосах со среднегеометрическими частотами в Γ ц, по формуле:

a_{cp}=A/S_{orp}

А – эквивалентная площадь звукопоглощения, м²

Sorp — суммарная площадь ограждающих поверхностей помещения, M^2 . Площадь звукопоглощающих конструкций (штучных звукопоглотителей) не учитывается.

Sorp=6120 м²

Название	31.5	63	125	250	500	1000	2000	4000	8000
Средние коэффициенты	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0,02	0.02
звукопоглощения									

Коэффициенты к нарушения диффузности поля в помещении в октавных полосах со среднегеометрическими частотами в Гц:

 $k=1.25+1.75*(a_{cp}-0.2)$, при a_{cp} меньше либо равно 0.4

 $k=1.6+4*(a_{cp}-0.4)$, при a_{cp} в промежутках м/у 0.4 и 0.5

k=2+5*(a_{cp}-0.5), при а_{ср} более 0.5

Название	31.5	63	125	250	500	1000	2000	4000	8000
Коэффициенты нарушения	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93	0.93
диффузности поля в помещении						•			

Акустические постоянные помещения $B(M^2)$ в октавных полосах со среднегеометрическими частотами в Γ ц: $B=A/(1-a_{cp})$

Название	31.5	63	125	250	500	1000	2000	4000	8000
Акустические постоянные помещения (B)	61.82	61.82	61.82	61.82	61.82	124.9	124.9	124.9	124.9

3. Расчет шума, проникающего из помещения на территорию

Суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, дБ $L_{\text{ист}}=10*\lg(\Sigma(10^{0.1*(\text{Li}+10*\lg(x/r/t/T+4/B/k)}))$

Li - мощность i-ого источника шума, дБ

В - акустическая постоянная помещения, мВ - акустическая постоянная помещения, м#2

r - расстояние до окна, кожуха, м

Т - пространственный угол, рад

х - коэффициент, учитывающий влияние ближнего поля

Спектр максимального шума: Преимущественно октавная полоса 500Гц

Название	31.5	63	125	250	500	1000	2000	4000	8000
Суммарный УЗД от всех источников	69.95	69.95	69.95	69.95	75.95	77.85	77.85	78.85	76.85
шума внутри помещения перед									
ограждающей конструкцией, дБ									

Шум, проникающий из помещения на территорию, дБ

 $L=L_{HCT}+10*lg(S_{OKHa})-R$

R - изоляция шума ограждающей конструкцией, дБ

 $S_{\text{окна}}$ - площадь ограждающей конструкции, м²

 $S_{\text{окна}} = 320 \text{ M}^2$

 $L_{\mbox{\tiny HCT}}$ - суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, дБ

Название	31.5	63	125	250	500	1000	2000	4000	8000	Lа макс.
Шума проникающий из помещения на территорию, дБ	79.4	74.9	70.5	66	67.5	71.9	68.8	62.3	52.8	0

Расчет шума, проникающего из помещения на территорию (версия 1.6)

Программа реализует метолики: СНиП 23-03-2003. Защита от шума.

Фирма "Интеграл" 2011-2012 г.

Пользователь: РУП "БелНИПИ энергопром" Регистрационный номер: 01-01-0370

Источник шума: Градирня № 2

Источники шума внутри помещения:

Уровни звукового давления, дБ (по октавным полосам со среднегеометрическими частотами, Гц): Название 31.5 125 250 500 1000 2000 4000 8000 Свободное падение воды 87.5 87.5 87.5 87.5 93.5 98.5 98.5 99.5 97.5 (дистанция замера: 0 м; расстояние до окна или кожуха (r): 2 м; Коэффициент, учитывающий влияние ближнего поля (х): 0;Пространственный угол: 12.56)

Мощности источников, дБ (по октавным полосам со среднегеометрическими частотами. Ги)

Название	31.5	63	125	250	500	1000	2000	4000	8000	Lа макс.
Свободное падение воды	87.5	87.5	87.5	87.5	93.5	98.5	98.5	99.5	97.5	

Состав и звукоизоляция ограждающей конструкции (окна), дБ (по октавным полосам со

среднегеометрическими частотами, Гц):

Название	31.5	63	125	250	500	1000	2000	4000	8000
Жалюзи градирни (общ. пл.	15.6	20.1	24.5	29	33.5	31	34.1	41.6	49.1
элемента: 320 кв. м)	<u></u> .								

Звукопоглощение ограждающих конструкций (по октавным полосам со среднегеометрическими частотами, Гц): Название 31.5 63 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 Поверхность (6120 кв. м) 0.01 0:01 0.01

0.02

Эквивалентные площади звукопоглощения конструкций, расположенных в помещении, м² (по октавным полосам со среднегеометрическими частотами, Гц)

Название 31.5 63 250 500

Результаты расчета

1. Расчет ограждающей конструкции (окна или кожуха): (R)

 $R=10*Ig(S/\Sigma(S_1/10^{0.1*Ri}))$

S- суммарная площадь ограждающей конструкции, M^2 $S=320 \text{ m}^2$

 S_i – площадь і-той части ограждающей конструкции, м²

R_i – изоляция воздушного шума і-той частью ограждающей конструкции, дБ

Название	31.5	63	125	250	500	1000	2000	4000	8000
Звукоизоляция ограждающей	15.6	20.1	24.5	29	33.5	31	34.1	41.6	49.1
конструкции (R)						,			

2. Расчетные характеристики помещения

Эквивалентные площади звукопоглощения A (м²) в октавных полосах со среднегеометрическими частотами в Гц:

 $A=\Sigma(a_i*S_i)+\Sigma(A_i*n_i)$

аі – коэффициент звукопоглощения і-й ограждающей поверхности

 S_i – площадь і-й ограждающей поверхности, M^2

 A_i — эквивалентная площадь звукопоглощения j-го штучного поглотителя, м²

n_i - количество ј-ых штучных поглотителей, шт.

Название	31.5	63	125	250	500	1000	2000	4000	8000
Эквивалентные площади	61.2	61.2	61.2	61.2	61.2	122.4	122.4	122.4	122.4
звукопоглощения (А)									

Средние коэффициенты звукопоглощения аср в октавных полосах со среднегеометрическими частотами в Гц, по формуле:

a_{cp}=A/S_{orp}

А – эквивалентная площадь звукопоглощения, м²

Sorp — суммарная площадь ограждающих поверхностей помещения, M^2 . Площадь звукопоглощающих конструкций (штучных звукопоглотителей) не учитывается.

Sorp= 6120 m^2

Название	31.5	63	125	250	500	1000	2000	4000	8000
Средние коэффициенты	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02
звукологлощения	ļ								

Коэффициенты к нарушения диффузности поля в помещении в октавных полосах со среднегеометрическими частотами в Гц:

 $k=1.25+1.75*(a_{cp}-0.2)$, при a_{cp} меньше либо равно 0.4

 $k=1.6+4*(a_{co}-0.4)$, при a_{co} в промежутках м/у 0.4 и 0.5

 $k=2+5*(a_{cp}-0.5)$, при a_{cp} более 0.5

Название	31.5	63	125	250	500	1000	2000	4000	8000
Коэффициенты нарушения	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93	0.93
диффузности поля в помещении	l							1	

Акустические постоянные помещения $B(M^2)$ в октавных полосах со среднегеометрическими частотами в Γ ц: $B=A/(1-a_{cn})$

Название	31.5	63	125	250	500	1000	2000	4000	8000
Акустические постоянные	61.82	61.82	61.82	61.82	61.82	124.9	124.9	124.9	124.9
помещения (В)									

3. Расчет шума, проникающего из помещения на территорию

Суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, дБ $L_{\text{вст}}=10*lg(\Sigma(10^{0.1*(\text{Li+10*lg(x}/t/\text{T+4/B/k})}))$

Li - мощность i-ого источника шума, дБ

В - акустическая постоянная помещения, мВ - акустическая постоянная помещения, м#2

г - расстояние до окна, кожуха, м

Т - пространственный угол, рад

х - коэффициент, учитывающий влияние ближнего поля

Спектр максимального шума: Преимущественно октавная полоса 500Гц

Название	31.5	63	125	250	500	1000	2000	4000	8000
Суммарный УЗД от всех источников	69.95	69.95	69.95	69.95	75.95	77.85	77.85	78.85	76.85
шума внутри помещения перед									' I
ограждающей конструкцией, дБ									

Шум, проникающий из помещения на территорию, дБ

 $L=L_{HCT}+10*lg(S_{OKH2})-R$

R - изоляция шума ограждающей конструкцией, дБ

 $S_{\text{окна}}$ - площадь ограждающей конструкции, м²

 $S_{\text{окна}} = 320 \text{ м}^2$

 $L_{\text{ист}}$ - суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, дБ

Название	31.5	63	125	250	500	1000	2000	4000	8000	Lа макс.
Шума проникающий из помещения на территорию, дБ	79.4	74.9	70.5	66	67.5	71.9	68.8	62.3	52.8	0

Расчет шума, проникающего из помещения на территорию (версия 1.6)

Программа реализует методики: СНиП 23-03-2003. Защита от шума.

Фирма "Интеграл" 2011-2012 г.

Пользователь: РУП "БелНИПИ энергопром" Регистрационный номер: 01-01-0370

Источник шума: градирия № 3

Источники шума внутри помещения:

Уровни звукового давления, дБ (по октавным полосам со среднегеометрическими частотами, Гц): Название 31.5 63 125 250 500 1000 2000 4000 8000 La макс Свободное падение воды 90.8 90.8 90.8 90.8 96.8 101.8 101.8 102,8 100.8 100.8 (дистанция замера: 0 м; расстояние

до окна или кожуха (г): 2 м; Коэффициент, учитывающий влияние ближнего поля (х): 0;Пространственный угол: 12.56)

Мощности источников, дБ (по октавным полосам со среднегеометрическими частотами. Гтт):

								101014	, /	<u>. </u>
Название	31.5	63	125	250	500	1000	2000	4000	8000	La
1	0	-			300	1000	2000	4000	5000	L-a
										макс.
Свободное падение воды	90.8	90.8	90.8	90.8	96.8	101.8	101.8	102.8	100.8	
										

Состав и звукоизоляция ограждающей конструкции (окна), дБ (по октавным полосам со среднегеометрическими частотами, Ги);

Название 31.5 63 125 250 500 1000 2000 4000 | 8000 Жалюзи градирни (общ. пл. 15.6 20,1 29 24.5 33.5 31 34.1 41.6 элемента: 360 кв. м)

Звукопоглощение ограждающих конструкций (по октавным полосам со среднегеометрическими частотами, Гц): Название 31.5 63 125 250 500 1000 2000 | 4000 | 8000 Стены (8160 кв. м) 0.01 0.01

0.01

0.01

49.1

Эквивалентные площади звукопоглощения конструкций, расположенных в помещении, м2 (по октавным полосам со среднегеометрическими частотами, Гц)

0.01

Название 31.5 63 125 250 500 1000 2000 4000 8000

Результаты расчета

1. Расчет ограждающей конструкции (окна или кожуха): (R)

 $R=10*lg(S/\Sigma(S_i/10^{0.1*Ri}))$

S – суммарная площадь ограждающей конструкции, м² $S=360 \text{ m}^2$

 S_i – площадь і-той части ограждающей конструкции, M^2

 R_i – изоляция воздушного шума i-той частью ограждающей конструкции, дБ

Название	31.5	63	125	250	500	1000	2000	4000	8000
Звукоизоляция ограждающей	15.6	20.1	24.5	29	33.5	31	34.1	41.6	49.1
конструкции (R)									

2. Расчетные характеристики помещения

Эквивалентные площади звукопоглощения A (м²) в октавных полосах со среднегеометрическими частотами в

 $A=\Sigma(a_i*S_i)+\Sigma(A_i*n_i)$

аі - коэффициент звукопоглощения і-й ограждающей поверхности

 S_i – площадь і-й ограждающей поверхности, M^2

 ${
m A_{j}}$ – эквивалентная площадь звукопоглощения j-го штучного поглотителя, ${
m M}^{2}$

n; - количество ј-ых штучных поглотителей, шт.

Название	31.5	63	125	250	500	1000	2000	4000	8000
Эквивалентные площади	81,6	81.6	81.6	81,6	81.6	163.2	163.2	163.2	163.2
звукопоглощения (А)								,	

Средние коэффициенты звукопоглощения аср в октавных полосах со среднегеометрическими частотами в Гц, по формуле:

a_{co}=A/S_{oro}

А – эквивалентная площадь звукопоглощения, м²

Sorp — суммарная площадь ограждающих поверхностей помещения, ${\rm M}^2$. Площадь звукопоглощающих конструкций (штучных звукопоглотителей) не учитывается.

Sorp=8160 м²

Название	31.5	63	125	250	500	1000	2000	4000	8000
Средние коэффициенты	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02
звукопоглощения		'							

Коэффициенты k нарушения диффузности поля в помещении в октавных полосах со среднегеометрическими частотами в Гц:

 $k=1.25+1.75*(a_{cp}-0.2)$, при a_{cp} меньше либо равно 0.4

 $k=1.6+4*(a_{cp}-0.4)$, при a_{cp} в промежутках м/у 0.4 и 0.5

 $k=2+5*(a_{cp}-0.5)$, при a_{cp} более 0.5

Название	31.5	63	125	250	500	1000	2000	4000	8000
Коэффициенты нарушения	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0.93	0.93
диффузности поля в помещении									

Акустические постоянные помещения $B(M^2)$ в октавных полосах со среднегеометрическими частотами в Γ ц: $B=A/(I-a_{cp})$

Название	31.5	63	125	250	500	1000	2000	4000	8000
Акустические постоянные	82.42	82.42	82.42	82.42	82.42	166.53	166.53	166.53	166.53
помещения (В)									

3. Расчет шума, проникающего из помещения на территорию

Суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, дБ

 $L_{\text{ucr}} = 10*\lg(\Sigma(10^{0.1*\text{Li}})) - 10*\lg(B) - 10*\lg(k)$

Li - мощность i-ого источника шума, дБ

В - акустическая постоянная помещения, м²

Спектр максимального щума: Преимущественно октавная полоса 31.5Гц

Название	31.5	63	125	250	500	1000	2000	4000	8000
Суммарный УЗД от всех источников	72	72	72	72	78	79.9	79.9	80.9	78.9
шума внутри помещения перед									
ограждающей конструкцией, дБ						٠			

Шум, проникающий из помещения на территорию, дБ

 $L=L_{HCT}+10*ig(S_{OKHB})-R$

R - изоляция шума ограждающей конструкцией, дБ

 $S_{\text{окна}}$ - площадь ограждающей конструкции, м 2

 $S_{\text{окна}} = 360 \text{ м}^2$

 $L_{
m ucr}$ - суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, лБ

Название	31.5	63	125	250	500	1000	2000	4000	8000	Lа макс.
Шума проникающий из помещения на территорию, дБ	81.96	77.46	73.06	68.56	70.06	74.46	71.36	64.86	55.36	0

Расчет шума, проникающего из помещения на территорию (версия 1.6)

Программа реализует методики: СНиП 23-03-2003. Зашита от шума.

Фирма "Интеграл" 2011-2012 г.

Пользователь: РУП "БелНИПИ энергопром" Регистрационный номер: 01-01-0370

Источник шума: градирня № 4

Источники шума внутри помещения:

Уровни звукового давления, дБ (по октавным полосам со среднегеометрическими частотами, Гц): Название 31.5 63 125 250 500 1000 2000 4000 8000 La макс. Свободное падение воды 90.8 90.8 90.8 90.8 96.8 101.8 101.8 102.8 100.8 100.8 (дистанция замера: 0 м; расстояние до окна или кожуха (r): 2 м; Коэффициент, учитывающий влияние ближнего поля (х): 0;Пространственный угол: 12.56)

Мощности источников, дБ (по октавным полосам со среднегеометрическими частотами. Гп):

Название	31.5	63	125	250	500	1000	2000	4000	8000	Lа макс.
Свободное падение воды	90.8	90.8	90.8	90.8	96.8	101.8	101.8	102.8	100.8	

Состав и звукоизоляция ограждающей конструкции (окна), дБ (по октавным полосам со

среднегеометрическими частотами, Гц):

Название	31.5	63	125	250	500	1000	2000	4000	8000
Жалюзи градирни (общ. пл.	15.6	20,1	24.5	29	33.5	31	34.1	41.6	49.1
элемента: 360 кв. м)						•			

Звукопоглощение ограждающих конструкций (по октавным полосам со среднегеометрическими частотами, Гц): Название 31.5 63 125 250 500 1000 2000 4000 8000 Стены (8160 кв. м) 0.01 0.01 0.01 0.01 0.02 0.02 0.02

Эквивалентные площади звукопоглощения конструкций, расположенных в помещении, M^2 (по октавным полосам со среднегеометрическими частотами, Γ ц)

 Название
 31.5
 63
 125
 250
 500
 1000
 2000
 4000
 8000

Результаты расчета

1. Расчет ограждающей конструкции (окна или кожуха): (R)

 $R=10*lg(S/\Sigma(S_i/10^{0.1*Ri}))$

S — суммарная площадь ограждающей конструкции, м 2 S=360 м 2

 S_{i} – площадь i-той части ограждающей конструкции, M^{2}

 R_i – изоляция воздушного шума і-той частью ограждающей конструкции, дБ

Название	31.5	63	125	250	500	1000	2000	4000	8000
Звукоизоляция ограждающей	15.6	20.1	24.5	29	33.5	31	34.1	41.6	49.1
конструкции (R)									

2. Расчетные характеристики помещения

Эквивалентные площади звукопоглощения $A(M^2)$ в октавных полосах со среднегеометрическими частотами в Γ ц:

 $A=\Sigma(a_i*S_i)+\Sigma(A_j*n_j)$

а_і — коэффициент звукопоглощения і-й ограждающей поверхности

 S_i – площадь і-й ограждающей поверхности, M^2

 A_{j} – эквивалентная площадь звукопоглощения j-го штучного поглотителя, м²

n_i - количество ј-ых штучных поглотителей, шт.

Название	31.5	63	125	250	500	1000	2000	4000	8000
Эквивалентные площади	81.6	81.6	81.6	81.6	81.6	163.2	163.2	163.2	163.2
звукопоглощения (А)	ļ							,	

Средние коэффициенты звукопоглощения а_{ср} в октавных полосах со среднегеометрическими частотами в Гц, по формуле:

a_{co}=A/S_{orp}

А – эквивалентная площадь звукопоглощения, м²

Sorp — суммарная площадь ограждающих поверхностей помещения, ${\rm M}^2$. Площадь звукопоглощающих конструкций (штучных звукопоглотителей) не учитывается.

Sorp=8160 м²

Название	31.5	63	125	250	500	1000	2000	4000	8000
Средние коэффициенты	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02
звукопоглощения				1					

Коэффициенты k нарушения диффузности поля в помещении в октавных полосах со среднегеометрическими частотами в Гц:

 $k=1.25+1.75*(a_{co}-0.2)$, при a_{co} меньше либо равно 0.4

 $k=1.6+4*(a_{cp}-0.4)$, при a_{cp} в промежутках м/у 0.4 и 0.5

k=2+5*(a_{cp}-0.5), при а_{ср} более 0.5

Название	31.5	63	125	250	500	1000	2000	4000	8000
Коэффициенты нарушения	0.92	0.92	0.92	0.92	0.92	0.93	0.93	0,93	0.93
диффузности поля в помещении				1					

Акустические постоянные помещения $B (m^2)$ в октавных полосах со среднегеометрическими частотами в Γ ц: $B=A/(1-a_{co})$

Название	31.5	63	125	250	500	1000	2000	4000	8000
Акустические постоянные	82.42	82.42	82.42	82.42	82.42	166.53	166.53	166.53	166.53
помещения (В)						Ι,	l	1	

3. Расчет шума, проникающего из помещения на территорию

Суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, дБ

 $L_{\text{HCT}} = 10* \lg(\Sigma(10^{0.1*\text{Li}})) - 10* \lg(B) - 10* \lg(k)$

Li - мощность i-ого источника шума, дБ

В - акустическая постоянная помещения, м²

Спектр максимального шума: Преимущественно октавная полоса 31.5Гц

Название	31.5	63	125	250	500	1000	2000	4000	8000
Суммарный УЗД от всех источников	72	72	72	72	78	79.9	79.9	80.9	78.9
шума внутри помещения перед									
ограждающей конструкцией, дБ									

Шум, проникающий из помещения на территорию, дБ

 $L=L_{HCT}+10*lg(S_{OKHa})-R$

R - изоляция шума ограждающей конструкцией, дБ

 $S_{\text{окна}}$ - площадь ограждающей конструкции, м 2

 $S_{okha} = 360 \text{ m}^2$

 $L_{\text{ист}}$ - суммарный УЗД от всех источников шума внутри помещения перед ограждающей конструкцией, πF

Название	31.5	63	125	250	500	1000	2000	4000	8000	La
						•				макс.
Шума проникающий из помещения	81.96	77.46	73.06	68.56	70.06	74.46	71.36	64.86	55.36	0
на территорию, дБ	Į.									

МІНІСТЭРСТВА ПРЫРОДНЫХ РЭСУРСАЎ І АХОВЫ НАВАКОЛЬНАГА АСЯРОДДЗЯ РЭСПУБЛІКІ БЕЛАРУСЬ МІНПРЫРОДЫ

аул. Калектарная, 10, 220004, г. Мінск тэл. (37517) 200-66-91; факс (37517) 200-55-83 E-mail: minproos@mail.belpak.by p/p № ВУ29АКВВ36049000001 10000000 ААТ «ААБ Беларусбанк» г. Мінск, код АКВВВУ2Х, УНП 100519825; АКПА 00012782

12.64.20(8 № 11-16/1799 На № 22/1621ф от 29.03,2018

МИНИСТЕРСТВО ПРИРОДНЫХ РЕСУРСОВ И ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ РЕСПУБЛИКИ БЕЛАРУСЬ МИНПРИРОДЫ

ул. Коллекторнад, 10, 220004, г. Минск тел. (37517) 200-66-91; факс (37517) 200-55-83 E-mail: minproos@mail.belpak.by p/c № BY29AKBB3604900001110000000 OAO «АСБ Беларусбанк» г. Минск, код АКВВВҮ2Х, УНП 100519825; ОКПО 00012782

РУП «Белнипиэнергопром»

копия: ГУО «Республиканский центр государственной экспертизы и повышения квалификации руководящих работников и специалистов»

(направляется по почте госорганов)

О проектировании котельных установок для работы на мазуте

Министерство природных ресурсов и охраны окружающей среды Республики Беларусь, рассмотрев обращение по вопросу проектирования котельных установок для работы на мазуте, сообщает.

Мазут является высокоуглеродным видом топлива, снижение потребления которого требуется в соответствии с обязательствами Республики Беларусь, вытекающими из Парижского соглашения.

Выбросы загрязняющих веществ в атмосферный воздух при сжигании мазута существенно превышают выбросы при сжигании природного газа и использовании возобновляемых источников энергии.

В соответствии с главой 8 «Меры по охране окружающей среды» Государственной программы развития Белорусской энергетической системы на период до 2016 года, утвержденной постановлением Совета Министров Республики Беларусь от 29.02.2012 № 194, в период до 2020 года предусматривается снижение выбросов углекислого газа и диоксида азота не менее чем на 15 процентов к уровню 2010 года за счет реализации соответствующих мероприятий, в том числе:

внедрение наиболее эффективных средств очистки отходящих газов от твердых частиц и диоксида серы, современных средств снижения выбросов оксида азота и диоксида углерода;

глубокая утилизация продуктов сгорания (диоксида углерода и диоксида серы) для дальнейшего производства углекислоты и серной кислоты.

Кроме того, Государственной программой предусмотрена разработка мероприятий по снижению выбросов диоксида серы и твердых частиц, не превышающих уровень выбросов в 2010 году (в сопоставимых условиях), при выполнении проектов строительства и реконструкции энергоисточников ГПО "Белэнерго" и локальных источников, использующих местные виды топлива.

При этом, статистическая отчетность свидетельствует об обратном — в целом по белорусской энергосистеме выбросы загрязняющих веществ в 2016 году возросли на 29,8% по сравнению с 2010 годом.

Справочно: В 2010 году выбросы загрязняющих веществ от электроэнергетики составили 45,9 тыс.тонн, в том числе твердые частицы 0,3 тыс. тонн., серы диоксида 9,7 тыс.тонн, углерода оксида 7,4 тыс.тонн, азота диоксида 23,8 тыс.тонн. В 2016 году выбросы загрязняющих веществ от электроэнергетики составили 59,6 тыс.тонн, в том числе твердые частицы 6,1 тыс. тонн., серы диоксида 8,1 тыс.тонн, углерода оксида 18,5 тыс.тонн, азота диоксида 20,6 тыс.тонн.

Проектирование энергообъектов (установка новых котлов), предназначенных для резервирования мощности белорусской энергосистемы с учетом ввода Белорусской атомной станции осуществляется в местах и районах, в которых наблюдаются превышения нормативов качества атмосферного воздуха по сере диоксиду (код-0330) или группе суммации 6009 (азот (IV) оксид (код 0301), сера диоксид (код 0330)).

В соответствии с пунктом 10.3 ЭкоНиП 17.01.06-001-2017 «Охрана окружающей среды и природопользование. Требования экологической безопасности» номинальная мощность котельной установки определяется как сумма всех мощностей установленных котлов, подключенных к стационарному источнику выброса (дымовой трубе) при их возможной одновременной работе.

Исходя из изложенного, проектирование новых котлов должно осуществляться с одновременной заменой старых, неэффективных, введенных до в эксплуатацию до 01.06.2006 года котлов, с учетом общего времени работы на мазуте котельной установки (стационарного источника выброса (дымовой трубы)) не более 700 часов в год. При этом, проектная документация должна разрабатываться исходя из содержания серы в мазуте не более 1,2% и содержать особые условия реализации проектных решений, включающие детальные требования по возможным режимам работы энергособъектов только при аварийном режиме работы белорусской энергосистемы (в случаях останова блока

атомной электростанции); и (или) прекращения подачи природного газа); и (или) при проведении ремонтных работ газораспределительных станций; и (или) при проведении режимно-наладочных испытаний котлов при работе на мазуте.

Справочно: Белорусские нефтеперерабатывающие предприятия проводят модернизацию и предусматривают ввод в эксплуатацию до конца I квартала 2019 года установок, снижающих содержание серы в мазуте ниже 1,2%.

В соответствии с Отраслевой программой развития электроэнергетики на 2016 — 2020 годы, утвержденной постановлением Министерства энергетики Республики Беларусь от 31.03.2016 № 8 требуется вывод из эксплуатации неэффективных мощностей в ГПО «Белэнерго» — 216,0 МВт и замещение выбывающих — 116,0 МВт.

При указанных выше условиях работы вновь проектируемых котлов на мазуте (не более 700 часов в год, содержание серы в мазуте не более 1,2%) допускается в проектной документации применение проектных решений, не предусматривающих установку сероочистного оборудования и допускается превышение норм выбросов серы диоксида, установленных в приложении Е к ЭкоНиП 17.01.06-001, при этом такая норма после введения новых котлов в эксплуатацию будет установлена как временный норматив допустимых загрязняющих веществ в атмосферный воздух в разрешении на выброс или комплексном природоохранном разрешении с установлением соответствующих условий осуществления выбросов загрязняющих веществ в атмосферный воздух (как к качеству топлива, так и к режиму работы котельной установки только при аварийном режиме работы белорусской энергосистемы (в случаях останова блока атомной электростанции); и (или) прекращения подачи природного газа); и (или) при проведении ремонтных работ газораспределительных станций; и (или) при проведении режимно-наладочных испытаний котлов при работе на мазуте.

Первый заместитель Министра

lef

И.В.Малкина

МІНІСТЭРСТВА ПРЫРОДНЫХ РЭСУРСАЎ І АХОВЫ НАВАКОЛЬНАГА АСЯРОДДЗЯ РЭСПУБЛІКІ БЕЛАРУСЬ МІНПРЫРОДЫ

вул. Калектарная, 10. 220004, г. Мінек тэл. (37517) 200-66-91; факс (37517) 200-55-83 E-mail: minproos@mail.belpak.by p/p № ВУ29АКВВ3604900000110000000 ААТ «ААБ Веларусбанк» г. Мінек. код АКВВВУ25: АКПА 00012782

Ha № 0T

ONDA

Kame corrección of B.

1770 Kon 184.08 2018

Corpourenne coccey B. L.

Plus yseta & pascis

МИНИСТЕРСТВО
ПРИРОДНЫХ РЕСУРСОВ И
ОХРАНЫ ОКРУЖАЮЩЕЙ СРЕДЫ
РЕСПУБЛИКИ БЕЛАРУСЬ
МИНПРИРОДЫ

уп. Коллекторная, 10, 220004, г. Минск тей. (37517) 200-66-91; факс (37517) 200-55-83 "В-тай!: minprods@mail.belpak.by p/c № BY29AKBB36049000001110000000 ОАО «АСБ Беларусбанк» Б. Минск. код АКВВВУ2Х, УНП 100519825; ОКПО 00012752

Министерство энергетики Республики Беларусь

«отденерго» ОПТ

РУП «Белнипиэнергопром»

копия: ГУО «Республиканский центр государственной экспертизы и квалификации руководящих работников и специалистов»

Об установлении норм выбросов для котельных установок

В Министерство природных ресурсов и охраны окружающей среды Республики Беларусь поступают обращения в отношении требований, предъявляемых при установлении норм выбросов для котельных установок, в том числе при проектировании новых котельных установок, вводимых в эксплуатацию после 1 января 2019 года взамен старых неэффективных мощностей.

В соответствии с частями первой и второй пункта 10.3 ЭкоНиП 17.01.06-001-2017 «Охрана окружающей среды и природопользование. Требования экологической безопасности»:

номинальная мощность котельной установки определяется как сумма всех мощностей установленных котлов, подключенных к стационарному источнику выброса (лымовой трубе) при их возможной, одновременной работе;

в случае, если выбросы загрязняющих веществ в атмосферный воздух от двух (и более) одновременно работающих котлов или двигателей внутреннего сгорания (агрегатов) осуществляются в общую дымовую трубу, норма выбросов для стационарного источника выбросов устанавливается как для установки мощностью, равной сумме

РУП «ВЕПНИПИЭНЕРГОПРОМ» 2 4 АВТ 2018 Вх.фекс 367 9 мощностей каждого котла или двигателя внутреннего сгорания (агрегата).

Основные правила расчета норм выбросов для двух (и более) одновременно работающих котлов или двигателей внутреннего сгорания (агрегатов) приведены в пункте 10.4 ЭкоНиП 17.01.06-001-2017.

В целях единообразного подхода к рассмотрению проектной (предпроектной) документации с учетом требований пунктов 10.3 и 10.4 ЭкоНиП 17.01.06-001-2017 в случаях, когда к стационарному источнику выброса (дымовой трубе) подключены одновременно работающие котлы, требования для которых установлены в различных таблицах Приложения Е (соответственно введенные в эксплуатацию до 01.06.2006 (таблицы Е.2, Е.4, Е.6, Е.7), введенные в эксплуатацию с 01.2006 до 31.12.2018 (таблицы Е.3, Е.5, Е.8, Е.9) и к данной дымовой трубе планируется подключение новых котельных установок, вводимых в эксплуатацию после I января 2019 года (таблицы Е.10 - Е.13), то расчет нормы выброса для такой котельной установки производится по формуле:

$$C_{f} = \frac{C_{y1}^{1,4} \times V_{y1}^{1,4} + C_{y2}^{1,4} \times V_{y2}^{1,4} + C_{y3}^{1,4} \times V_{y3}^{1,4}}{V_{y1}^{1,4} + V_{y2}^{1,4} + V_{y3}^{1,4} + V_{y3}^{1,4}}, \qquad \qquad \vdots$$
(1)

где $C_{\rm pl}^{1.4}$ — норма выбросов от котельных установок, введенных в эксплуатацию до 01.06.2006, при нормальных условиях и содержании кислорода в отработавших газах 6%, определяемая согласно таблицам Е.2, Е.4, Е.6, Е.7 (Приложение Е) ЭкоНиП 17.01.06-001-2017, мг/м³;

С_{у2} — норма выбросов от котельных установок, введенных в эксплуатацию с 01.2006 до 31.12.2018, при нормальных условиях и содержании кислорода в отработавших газах 6%, определяемая согласно таблицам Е.3; Е.5, Е.8, Е.9 (Приложение Е) ЭкоНиП 17.01.06-001-2017, мг/м³,

С_{у2} — норма выбросов от котельных установок, вводимых в эксплуатацию после 1 января 2019 года, при нормальных условиях и содержании кислорода в отработавших газах 6%, определяемая согласно таблицам Е.10 - Е.13 (Приложение Е) ЭкоНиП 17.01.06-001-2017, мг/м³;

 V_{yk}^{α} — фактический объем сухих отработавших газов, образующийся при использовании топлива в k-той, котельной установке при нормальных условиях и содержании кислорода в отработавших газах 6%, м³/с, рассчитанный как: $V_{yk}^{\alpha} = B_{yk} \cdot V_{dy}^{1.4}$, где:

В_{ук} — максимальный расчетный расход топлива на максимальной (номинальной) нагрузке, кг/с (м³/с);

 $V_{yx}^{1.4}$ — теоретический объем сухих дымовых газов, образующийся

использовании единицы тойлива, приведенный нормальным условиям, $M^3/K\Gamma (M^3/M^3)$.

В случае если к данной дымовой трубе планируется подключение новых котельных установок, вводимых в экоплуатацию после 1 января 2019 года, требования к концентрациям загрязняющих веществ от которых приняты в утвержденной в установленной порядке до вступления в действие ЭкоНиП 17.01.06-001-2017 предпроектной документации (обосновании инвестирования в строительство), то для таких установок превышение норм установленных в таблицах Е.10 - Е.13, при условии непревышения предельного значения нормы выброса для котельной установки в целом, рассчитанной по формуле (1).

Пример: К дымовой трубе подключен котел, эксплуатацию 07.1972 номинальной мощностью 40 МВт. В проектной документации планируется подключение к данной дымовой трубе 07.2020 котла номинальной мощностью 60 МВт. Есть режсим, когда все два котла работают одновременно. Требуется рассчитать норму выброса азота оксидов и серы диоксида для котельной установки мощностью 100 МВт.

Норма выброса азота оксидов для котлай введенного в эксплуатацию 07.1972 в соответствии с таблицей Е. 2 ЭкоНиП

10 100 meen	пствии с таб	лицей Е.2 ЭкоНиП-17.01.06-001-2017:
40 MBm	203	240
Норма выбр	роса азота о	240 ксидов для котла; вводимого в эксплуатацию
07.2020 в соотвеп	CMBUU C MOE	ксидов для котла; вводимого в эксплуатацию пиней Е.10 ЭкоНи II 17.01.06-001-2017:
60 MBm		ицеи Е.10 ЭкоНий 17.01.06-001-2017-
	<i>2a</i> 3	100

Параметры для расчета нормы выброса азота оксидов для котла

номинальной мощностью 40 МВт: Вид топлива 4 Tennoma КПД Pacxod: Фактический объем сгорания топлива cyxux отработавших 203 газов 33,53 95 1.256

Параметры для расчета нормы выброса азота оксидов для котла, номинальной мощностью 60 МВт:

Био топлива	Теплота сгорания		T	Фактический объем сухих отработавших
Paguan	33,53	93	1,924	23,802 23,802

оса азота оксидов для:каждого котпа:

порма выброса	Предельное значение
для котельной установки	(240*15,534+100*23,802)/39,336=155,3

Предположим, что проектная документация разработана в 2015 году и для котла номинальной мощностью 60 МВт принята норма выброса asoma оксидов 150 мг/м3. Для котельной установки в целом требуется соблюдение нормы выброса азота оксидов 155,3 мг/м3 (см. расчет в таблице выше). В данном случае для соблюдения нормы выбросов для котельной установки в целом возможно а) проведение мероприятий на действующем котле со снижением концентрации азота оксидов б) установление меньшей, нагрузки для нового котла.

Для данного примера предположим, что режимно-наладочными мероприятиями для котла, введенного в эксплуатацию 07.1972, достигнута концентрация азота оксидов 160 мг/м3, а для нового установлена максимальная нагрузка 50 МВт.

Параметры для расчета нормы выброса азота оксидов для данного

варианта приведены в таблице.

	Вид топлива:	Теплота сгорания	КПД	Расход топлива	Фактический объем сухих отработавши х газов	Фактичес кая концентра ция азота
котел номинальной мощностью 40 МВт. 07.1972	газ	33,53	95	1,258	15,534	оксидов 160
котел максимально й мощностью 50 МВт, 07.2020	газ	33,53	93	1,603	19,835	150,
для котельной установки		(160*15	,534+7	50*19,835)/35,369=154,4	

Таким образом, для данного примера норма выброса котельной установки в целом равна 154,4 мг/м3, что не превышает ранее рассчитанного предельного значения 155,3 мг/м³.

Первый заместитель Министра

И.В.Малкина

Пилипчук 200 47 57

Приложение О на листах 295 - 299

Расчет рассеивания на территориях особо охраняемых природных территорий (ООПТ)

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 7, ВАРИАНТ 1

Вариант расчета: ООПТ Расчет проведен на зиму

Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость	5 м/с
превышения в пределах 5%)	

Параметры источников выбросов

	№ пл.		№ ист	. Наименование источника	Вар.	Тип				Скорост		Гемп.	Коэф.	Коорд.		оорд.	Коорд. X2-ос. (м)	Коорд.	Ширина
при		цеха		ì			ист. (м)	устья	(м) ГВС (куб.м/с	TBC (M/d	c) 1 E	30 (0)	рел.	Х1-ос. (м	' ' ' '	ос. (м)	AZ-UG. (M)	12-06. (M)	источ. (м)
расч.				VП		1	100,0	-	3,00 18		24	166	1,0	303	0	-374,0	303,0	-374,0	
	0			Дымовая труба					<u>л,оо</u> точ Выброс, (т/г		лч і Лето:				<u>з</u> има:			Um	0,00
		Код		Наименование вещества			Выброс, (0.00014		0,0000000	, ,	Heio.	0,000	1 65	6,7 4,4	эима.	0,000			
		01: 01:		Кадмий и его соединения	1070 !!		0.00014		0.0000000	1		0,000	1 65			0,000			
		014	40	Медь и его соединения (в пересч	iele na	1	0.001000	00	0,0000000			0,000	1 00	0,1 7,4		0,000	, 1055,6	7,1	
		010	64	медь) Никель оксид			0.129199	97	0.0000000	1		0.008	1 65	6.7 4.4		0.007	1 695.8	4.7	
		01		Ртуть (Ртуть металлическая	۵۱		0.00015		0,0000000	i		0,000	1 65			0,000			
				Свинец и его соединения	n)		0.003646		0.0000000	i		0,002	1 65			0.002			
		0228				١_	0.001000		0,0000000	i		0,000	1 65			0,000			
				ресчете на хром)		•	9,00100	-	5,5555555	•		0,000		-,,.		0,000	, , , , , , ,	*11-	
				0229 Цинк и его соединения (в перес-		1	0.000000	an an	0,0000000	1		0,000	1 65	6,7 4,4		0,000	1 695,8	4,7	
		0229		цинк)		•	0.00000		5,555555	•		-,		-,,		-,	, , ,	.,-	
		0301		0301 Азота диоксид (Азот (IV) о			41.66000	00	0.0000000	1		0,099	1 65	6,7 4,4		0.094	1 695,8	4,7	
		03		Мышьяк и его соединения			0.000000		0.0000000	1		0,000	1 65			0,000			
		03:		Углерод (Сажа)			0.673000	00	0,0000000	1,5		0,004	1 44	9,6 4,4		0,004	1 483,9	4,7	
		0330 0337		Сера диоксид (Ангидрид серни	стый)		142.25000		0,0000000	1		0,169	1 65			0,161	1 695,8	4,7	
				Углерод оксид	•		11.07000	100	0,0000000	1		0,001	1 65	6,7 4,4		0,001	1 695,8	4,7	
		07		Бенз/а/пирен (3,4-Бензпире	н)		0.000209	90	0,0000000	1		0,025	1 65	6,7 4,4		0,024	1 695,8	4,7	
		29	04	Мазутная зола теплоэлектроста			0.393000	00	0,0000000	1,5		0,017	1 44			0,017	1 483,9		
	Ō	1		Дымовая труба	1	1	180,0	9	740,	7 10,2331	17	188,8	1,0	533	0	-162,0	533,0	-162,0	0,00
		Код		Наименование вещества			Выброс, (r/c)	Выброс, (т/г) F .	Лето:	Ст/ПД	K Xr	n Um	Зима:	Cm/∏	ĮK Xm	Um	
		01:		Кадмий и его соединения			0.001064	40	0,0000000	1		0,000	3 49			0,000			
		014	40	Медь и его соединения (в пересч	чете на	3	0.008000	00	0,0000000	1		0,000	3 49	4,2 6		0,000	3 565,8	6,3	
				медь)															
		016	64	Никель оксид			0.950446		0,0000000	1		0,010	3 49			0,010			
		01	83	Ртуть (Ртуть металлическая			0.001083		0,0000000	1		0,000	3 49			0,000	•		
		01	84	Свинец и его соединения			0.02682	10	0,0000000	1		0,003	3 49			0,003			
		02	28	Хрома трехвалентные соединени	я (в пе	}-	0.010200	00	0,0000000	1		0,000	3 49	4,2 6		0,000	3 565,8	6,3	
				ресчете на хром)						_									
		02:	29	Цинк и его соединения (в пересч	ете на	1	0.034000	00	0,0000000	. 1		0,000	3 49	4,2 6		0,000	3 565,8	6,3	
				цинк)								0.004	0.40	40 0		0.007		6.0	
		03		Азота диоксид (Азот (IV) окс			206.58000		0,0000000	1		0,091	3 49			0,087			
		03		Мышьяк и его соединения	l		0.000000		0,0000000	1		0,000	3 49			0,000			
		03		Углёрод (Сажа)	51		4.954000		0,0000000	1,5		0,005	3°05 3 49			0;005 0,220			
		03		Сера диоксид (Ангидрид серни	стыи)		1044.3570		0,0000000	1 1		0,229 0,001	3 49			0,220			
		03		Углерод оксид			53.37000 0.001372		0,0000000	1		0,030	3 49			0,001			
		07		Бенз/а/пирен (3,4-Бензпире			2.88700		0,0000000	1,5		0,030	3 05			0,028			
	1 0	29		Мазутная зола теплоэлектроста	анции						• 7				<u> </u>				0,00
%	이	1	36	Вытяжка ЦЦР (сварочный пост)	1	1	6,5		0,30	3 1,5431	'	20	1,0	472	u	-130,0	472,0	-130,0	0,00
		Код	в-ва	Наименование вещества			Выброс, ((r/c)	Выброс, (т/г) F.	Лето:	Ст/ПД			Зима:			Um	
		03		Азота диоксид (Азот (IV) окс	ид)		0.00320		0,0000000	1		0,023	37			0,041		0,7	
		03		Углерод оксид			0.003692	20	0,0000000	1		0,001	37			0,002		0,7	
		29	80	Пыль неорганическая, содержаща	я мен	ee	0.000148	81	0,0000000	3		0,003	18	,5 0,5		0,005	5 14,3	0,7	
		-		70% SiO2															

%	0	1	37Вытяжка РММ (сварочный 1	1 3,0	0,40 0,206	1,6393	20	1,0	350,0	-91,0	350,0	-91,0	0,00
				D: 5 (-/-)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		Код в-ва	Наименование вещества	Выброс, (г/с) 0.0032000	0,0000000	1	0,142	17,1	0,5	0,160	17,1	0,8	
		0301	Азота диоксид (Азот (IV) оксид)	0.0032000	0.0000000	1	0,008	17,1	0,5	0.009	17,1	0,8	
		0337	Углерод оксид	0.0030920	0.0000000	3	0,016	8.6	0,5	0,019	8.6	0,8	
		2908	Пыль неорганическая, содержащая менее	0.0001461	0,0000000	·	0,010	0,0	5,5	0,000	-,-	-,-	
		_ , _	70% SiO2	1 60,0	7,00 650,6	16,9055	103	1,0	580,0	-276,0	580.0	-276,0	0,00
-	0		23 Дымовая труба 1		Выброс, (т/г).	F Лето:	Ст/ПДК	Xm	Um Зима:		Xm	Um	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с) 0.0000202	0.0000000	1 1610.	0,000	1 603,4	8,1	0,000	1 631.6	8.7	
		0183	Ртуть (Ртуть металлическая)	44.7050000	0.0000000	1	0,135	1 603,4	8.1	0.130	1 631.6	8.7	
		0301	Азота диоксид (Азот (IV) оксид)	134.1150000	0.0000000	1	0,020	1 603,4	8,1	0,019	1 631,6		
		0337	Углерод оксид	67.0580000	0.0000000	i	0,001	1 603,4	8,1	0.001	1 631.6		
		0410	Метан Бенз/а/пирен (3,4-Бензпирен)	0.0000019	0,0000000	i	0.000	1 603,4	8,1	0.000	1 631,6		
		0703		1 100.0	7.00 338,89	8,80588	133	1,0	425,0	-152,0	425,0	-152,0	0,00
+	0	2	эдимовая труба	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:		Xm	Um	
		Код в-ва	Наименование вещества	0.0000260	0.0000000	1	0,000	1 847,2	5,1	0,000	1 896.3	5,4	
		0183	Ртуть (Ртуть металлическая) Азота диоксид (Азот (IV) оксид)	43.3200000	0.0000000	i	0.082	1 847,2	5,1	0,078	1 896.3	5,4	
		0301	Азота диоксид (Азот (гу) оксид) Сера диоксид (Ангидрид сернистый)	5.2480000	0,0000000	i	0.005	1 847.2	5,1	0.005	1 896,3	5,4	
		0330	Углерод оксид	38.6640000	0.0000000	i	0.004	1 847,2	5,1	0,003	1 896,3	5,4	
		0337 0703	Бенз/а/пирен (3,4-Бензпирен)	0.0001800	0.0000000	1	0,017	1 847,2	5,1	0,016	1 896,3	5,4	
		<u> </u>	4Дымовая труба 1	1 100.0	6,00 71,79	2,53905	225	1,0	303,0	-374,0	303,0	-374,0	0,00
+	0		Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:		Xm	Um Зима:	Ст/ПДК	Xm	Um	
		Код в-ва	Ртуть (Ртуть металлическая)	0.0000050	0.0000000	1	0.000	1 389.5	3,5	0,000	1 417 5	3,6	
		0183 0301	Азота диоксид (Азот (IV) оксид)	12.2490000	0.0000000	1	0,042	1 389,5	3,5	0,040	1 417,5	3,6	
		0301	Сера диоксид (Ангидрид сернистый)	0.2450000	0.0000000	1	0,000	1 389,5	3,5	0,000	1 417,5	3,6	
		0337	Углерод оксид	2.2460000	0,0000000	1	0,000	1 389,5	3,5	0,000	1 417,5	3,6	
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000420	0,0000000	1	0,007	1 389,5	3,5	0,007	1 41 <u>7,5</u>		
+	0	2	5Дымовая труба 1	1 180,0	9,60 440,7	6,08851	162	1,0	533,0	-162,0	533,0	-162,0	0,00
<u> </u>		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:		Xm	Um Зима:		Xm	Um	
		0183	Ртуть (Ртуть металлическая)	0.0000310	0,0000000	1	0,000	3 003,8	4,7	0,000	3 082,5	5	
		0301	Азота диоксид (Азот (IV) оксид)	81.2120000	0,0000000	1	0,048	3 003,8	4,7	0,046	3 082,5	5 5	
		0330	Сера диоксид (Ангидрид сернистый)	1.6250000	0,0000000	1	0,000	3 003,8	4,7	0,000	3 082,5	ວ 5	
		0337	Углерод оксид	14.8890000	0,0000000	1	0,000	3 003,8	4,7	0,000 0,009	3 082,5 3 082,5	5 5	
		0703	Бенз/а/пирен (3,4-Б <u>ензпирен)</u>	0.0003340	0,0000000	1	0,010	3 003,8	4,7				0,00
+	0	2 1	123 Дымовая труба 1	1 60,0		21,73498	110	1,0	580,0	-276,0	580,0 Xm	-276,0 Um	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:		Xm 1 784,2	Um Зима:	Сm/ПДК 0,000	7m 1 807,5		
		0183	Ртуть (Ртуть металлическая)	0.0000230	0,0000000	1	0,000	1 784,2 1 784,2	9,6 9,6	0,000	1 807,5		
		0301	Азота диоксид (Азот (IV) оксид)	52.3490000	0,0000000	1	0,128 0,019	1 784,2	9,6 9,6	0,124	1 807,5		
		0337	Углерод оксид	157.0470000	0,0000000 0,000000	1	0,000	1 784,2	9,6 9,6	0.000	1 807,5		
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000020		7,80241	20	1,0	629,0	79,0	629,0	79,0	0,00
+	0	2	124 Вытяжка гаража-стоянки	1 7,8	0,50 1,532	7,00241	20	1,0	028,0	, 3,0	023,0	, 5,5	0,00
L		1600	(пождепо) Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима	Ст/ПДК	Xm	Um	
		Код в-ва 0301	Паименование вещества Азота диоксид (Азот (IV) оксид)	0.0004500	0.0000000	1	0,001	57.8	0,7	0,001	75,6	1,1	
		0301	Азота диоксид (Азот (ГУ) Оксид) Азот (II) оксид (Азота оксид)	0.0000730	0.0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
		0304	Углерод (Сажа)	0.0000100	0.0000000	1,5	0,000	50,6	0,7	0,000	66,1	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	57.8	0,7	0,000	75,6	1,1	
		0337	Углерод оксид	0.0132820	0,0000000	1	0,002	57.8	0,7	0,001	75,6	1,1	
		2754	Углеводороды предельные алифатическо-	0.0019660	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
			го ряда С11-С19		-							•	

+	Ō	2 1	25Вытяжка гаража-стоянки 1	1 7,8	0,50 1,532	7,80241	20	1,0	625,0	82,0	625,0	82,0	0,00
			(пождепо)					· 1	·		,-		0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0.0000000	1	0.001	57.8	0.7	0,001	75,6	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0.000	57.8	0,7	0,000	75,6	1,1	
		0328	Углерод (Сажа)	0.0000210	0,0000000	1,5	0.000	50.6	0.7	0.000	66,1	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	i	0.000	57.8	0,7	0.000	75,6	1,1	
		0337	Углерод оксид	0.0132820	0,0000000	1	0,002	57,8	0,7	0,001		1,1	
		2754	Углеводороды предельные алифатическо-	0.0019660	0,0000000	1	0,002	57.8	0,7	0,001		1,1	
			<u>го ряда С11-С19</u>	_				,	•	-,	, -	.,.	
+	ᆝ	2 1	26 Вытяжка гаража-стоянки 1	1 7,8	0,32 1,667	21,39068	20	1,0	617,0	88,0	617,0	88,0	0,00
			(пождепо)					1			,	33,5	3,33
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0,001	99,9	1,1	0.001	100,4	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
		0328	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	87,4	1,1	0,000	87,9	1,1	
		0330 0337	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	99,9	1,1	0,000		1,1	
		2754	Углерод оксид	0.0132820	0,0000000	1	0,001	99,9	1,1	0,001		1,1	
			Углеводороды предельные алифатическо- го ряда С11-С19	0.0019660	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
+	이	2 1:	27 Вытяжка гаража-стоянки 1	1 7,8	0,16 0,225	11,19058	20	1,0	604,0	83,0	604,0	83,0	0,00
		f_	(пождепо)	ļ.	.		1	·		33,3	','	30,0	-,
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима;	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0002080	0,0000000	1	0,001	44,5	0,5	0,001		0,6	
		0304	Азот (II) оксид (Азота оксид)	0.0000340	0,0000000	1	0,000	44,5	0,5	0.000		0,6	
		0328	Углерод (Сажа)	0.0000130	0,0000000	1,5	0,000	38,9	0,5	0,000		0,6	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000390	0,0000000	1	0,000	44,5	0,5	0,000		0,6	
		0337	Углерод оксид	0.0076320	0,0000000	1	0,002	44,5	0,5	0,003		0,6	
		2754	Углеводороды предельные алифатическо-	0.0011070	0,0000000	1	0,001	44,5	0,5	0,002	37,7	0,6	
	0	2 12	го ряда С11-С19 28 Вытяжка мастерской поста 1	4 00	0.00	0.0000		4 =[
<u> </u>	U _I	Код в-ва	Наименование вещества	1 6,0	0,20 0,125	3,97887	20	1,0	590,0	0,88	590,0	88,0	0,00
		2908	Паименование вещества Пыль неорганическая, содержащая менее	Выброс, (г/с) 0.0049500	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm		Ст/ПДК		Um	
		2300	70% SiO2	0.0049500	0,0000000	2	0,073	25,7	0,5	0,156	16,7	0,5	
+	0	2 12	29Вытяжка участка мойки 1	1 8,0	0,50 1,389	7,07412	20	1,0	645.0	155,0	645.0	155,0	0.00
1			автомобилей (пождело)	-	1,000	1,01412	.20	1,0	040,0	155,0	040,0	199,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm		Ст/ПДК	Xm I	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0000700	0,0000000	1	0,000	52,4	0,6	0,000			
		0304	Азот (II) оксид (Азота оксид)	0.0000110	0.0000000	i	0,000	52, 4 52,4	0,6	0,000		1,1 1,1	
		0328	Углерод (Сажа)	0.0000040	0.0000000	1,5	0,000	45,9	0,6	0.000		1,1 1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000130	0.0000000	1	0.000	52,4	0,6	0.000		1,1 1,1	
		0337	Углерод оксид	0.0025530	0,0000000	1	0,000	52,4	0,6	0.000		1,1	
		2754	Углеводороды предельные алифатическо-	0.0003710	0,0000000	1	0.000	52,4	0,6	0,000		1,1	
			го ряда С11-С19			-	-1	,	-,-	21000	,.	•••	

Выбросы источников по веществам

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето		•	Зима	
nл.	цех	ист.			(r/c)							
							Ст/ПДК	Χm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	5	1	-	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	36	1	%	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0	1_	37	1	%	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875
0	1	123	1	-	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	4	1	+	12.2490000	1	0,0415	1389,48	3,4661	0,0399	1417,49	3,6261
0	2	5	1	+	81.2120000	1	0,0483	3003,83	4,6805	0,0459	3082,52	4,9814
0	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	125	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0	2	126	1	+	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	127	1	+	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	0,5898
0	2	129	1	+	0.0000700	_1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
Итог	0:				189.1380280		0,4707			0,4940		

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Nº	Nº	Тип	Учет		F		Лето			Зима	
пл.	цех	ист.			(r/c):		Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	5	1	-	1044.3570000	. 1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	2	3	1	+	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	0.2450000	1	0,0004	1389,48	3,4661	0,0004	1417,49	3,6261
0	2	5	1	+	1.6250000	1	0,0005	3003,83	4,6805	0,0005	3082,52	4,9814
0	2	124	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итог	o:	•	•	•	7.1183010		0,0063			0,0060		

Вещество: 0337 Углерод оксид

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето		<u>.</u>	Зима	
пл.	цех	ист.			(r/c)							
							Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	11.0700000	1	0,0013	1656,70	4,3844	0,0013	1695,84	4,6520
0	1	5	1	-	53.3700000	1	0,0012	3494,24	6,0080	0,0011	3565,84	6,3263
0	1	36	1	%	0.0036920	1	0,0013	37,05	0,5000	0,0024	28,68	0,6921
0	1	37	1	%	0.0036920	1	0,0082	17,10	0,5000	0,0092	17,15	0,7875
0	1	123	1	_	134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	8,7327
0	2	3	1	+	38.6640000	1	0,0037	1847,22	5,0588	0,0035	1896,26	5,4356
0	2	4	1	+	2.2460000	1	0,0004	1389,48	3,4661	0,0004	1417,49	3,6261
0	2	5	1	+	14.8890000	1	0,0004	3003,83	4,6805	0,0004	3082,52	4,9814
0	2	123	1	+	157.0470000	1	0,0192	1784,23	9,6133	0,0186	1807,49	10,2041
0	2	124	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	125	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	126	1	+	0.0132820	1	0,0009	99,86	1,1230	0,0009	100,40	1,1498
0	2	127	1	+	0.0076320	1	0,0018	44,46	0,5000	0,0025	37,66	0,5898
0	2	129	1	+	0.0025530	1	0,0005	52,42	0,5748	0,0003	71,89	1,0729
Итог	o:		-,		212.9034150		0,0409			0,0411		

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	дельно Допу Концентрац		*Поправ. коэф. к ПДК/ОБУ В	Фоновая концентр.	
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

	Посты измерения ф	оновых	концент	граций		
№ поста	Наименование)			Координат	ы поста
1 vr	ı.Кедышко, 45				X	у
	THORETON 40				480	580
Код в-ва	Наименование вещества		Фоно	вые концен	трации	
0124	Vorsauči u ozo oce sumenus	Штиль	Север	Восток	Юг	Запад
0184	Кадмий и его соединения Свинец и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0301	Азота вискоия (Асет (IV) виска)	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0325	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0330	Мышьяк и его соединения	1E-7	1E-7	1E-7	1Ë-7	1E-7
0337	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013
0703	Углерод оксид	0.257	0.257	0.257	0.257	0.257
2904	Бенз/а/лирен (3,4-Бензпирен)	7.7E-7	7.7E-7	7.7E-7	7.7E-7	7.7E-7
	Мазутная зола теплоэлектростанций	1E-7	1E-7_	1E-7	1E-7	1E-7
2 ул	. Тростенецкая, 4				-4185	6
Код в-ва	Наименование вещества		Φούο	вые концент	TROLLIAM.	
		Штиль	Север	Восток		2000
0124	Кадмий и его соединения	2.1E-6	2.1E-6		l Or	Запад
0184	Свинец и его соединения	8.9E-5		2.1E-6	2.1E-6	2.1E-6
0301	Азота диоксид (Азот (IV) оксид)	0.073	8.9E-5	8.9E-5	8.9E-5	8.9E-5
0325	Мышьяк и его соединения	0.073 1E-7	0.073	0.073	0.073	0.073
0330	Сера диоксид (Ангидрид сернистый)		1E-7	1E-7	1E-7	1E-7
0337	Углерод оксид	0.028	0.028	0.028	0.028	0.028
0703	Бенз/а/пирен (3,4-Бензлирен)	0.871	0.871	0.871	0.871	0.871
2904	Мазутная зола теплоэлектростанций	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
	. Каховская, 72	1E <u>-7</u>	1E-7	1E-7	1E-7	1E-7
<u></u>	. NAAUBUKAN, 12				<u>-5200</u>	516
Код в-ва	Наименование вещества	Γ	Фоно	зые концент	рашии	
	<u> </u>	Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8,2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
<u> 29</u> 04	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1.73C-0 1E-7	1.75E-6 1E-7
4 ул	. Жилуновича, 3				-730	-63
Код в-ва	Louisoner					
וייא סיסמ	Наименование вещества	10		вые концент		
0124	Капына и ото сости	Штиль	Север	Восток	Юг	Запад
0184	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0301	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0325	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081
0330	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0337	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0703	Углерод оксид	1.315	1.315	1.315	1.315	1.315
	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
	Мазутная зола теплоэлектростанций Скорины, 18	1 <u>E-7</u>	1E-7	1E-7	1E-7_	1E-7
	окорины, 10				2044	453
Код в-ва	Наименование вещества					
	· ·-····	I	ФОНОВ	ые концент	กลแผน	

Штиль

Север

Восток

Запад

0124	Кадмий и его соединения	1.6E-6	1.6E-6.	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
6 ул	. Селицкого, 33	_	•		4562	-5345

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1,6E-6	1.6E-6
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
7 ул.	. Тростенецкая, 10Б				-3840	-1

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E- <u>7</u>	1E-7
8lnp.	. Партизанский, 66 А		•		-345	-101

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
	•	Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	. 1

Расчетные области Расчетные точки

Nº	Координа (г		Высота (м)	Тип точки	Комментарий
	Х	Υ		· .	
21	6835,00	290,00	2	точка пользователя	
22	8785,00	4040,00	2	точка пользователя	

Результаты расчета по веществам (расчетные точки)

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр.		Скор.	Фон (мг/куб.м)	Фон до искл.	Тип точки
21	6835	290	2	0.0884	265	5,00	0.05789	0.07181	0
22	8785	4040	2	0.0828	243	5,00	0.06324	0.07245	0

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

				- + +		<u> </u>			
Nº	Коорд	Коорд	Высота	Концентр.	Напр.	Скор.	Фон	Фон до	Тиπ
	Х(м)	Y(м)	(м)	(мг/куб.м)	ветра	ветра	(мг/куб.м)	искл.	точки
21	6835	290	2	0.0065	266	5,00	0.00526	0.02629	0
22	8785	4040	2	0.0060	243	5,00	0.00518	0.02591	0

Вещество: 0337 Углерод оксид

Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (мг/куб.м)	Напр. ветра	Скор. ветра	Фон (мг/куб.м)	Фон до искл.	••
21	6835	290	2	0.8870	265	5,00	0.84605	0.86045	0
22	8785	4040	2	0.8528	242	3,80	0.82614	0.83564	0

В соответствии с «Методикой расчета приземных концентраций загрязняющих веществ разных периодов осреднения применительно к крупным точечным источникам. 0212.22-99», утвержденной приказом Минприроды РБ от 30 декабря 1999г. № 390, для пересчета разнопериодных (в пределах суток) концентраций применимо эмпирическое выражение

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{\tau_2}{\tau_1}\right)^{0,2}$$

Для среднечасовых:

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{60}{20}\right)^{0.2} = 1,246; \quad C_2(\tau_2) = \frac{C_1(\tau_1)}{1,246},$$

где $C_1(\tau_1)$ и $C_2(\tau_2)$ - концентрации периодов осреднения τ_1 = 20 мин. и τ_2 = 60 мин: $C_1(\tau_1)$ - максимально-разовая и $C_2(\tau_2)$ - среднечасовая.

Таким образом, среднечасовая концентрация диоксида азота по варианту 1 составит:

- C_{ср.}= 0,0884/1,246 = 0,071 мг/м³ или 71 мкг/м³ (расчетная точка № 21);
- C_{ср.}= 0,0828/1,246 = 0,066 мг/м³ или 66 мкг/м³ (расчетная точка № 22).

Среднечасовая концентрация серы диоксида составит:

- C_{ср} = 0,0065/1,246 = 0,005 мг/м³ или 5 мкг/м³ (расчетная точка № 21);
- C_{ср.}= 0,006/1,246 = 0,005 мг/м³ или 5 мкг/м³ (расчетная точка № 22).

Для средних за 8 часов:

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{480}{20}\right)^{0,2} = 1,888; \quad C_2(\tau_2) = \frac{C_1(\tau_1)}{1.888},$$

где $C_1(\tau_1)$ и $C_2(\tau_2)$ - концентрации периодов осреднения τ_1 = 20 мин. и τ_2 = 480 мин: $C_1(\tau_1)$ - максимально-разовая и $C_2(\tau_2)$ - средняя за 8 часов.

Таким образом, средняя за 8 часов концентрация углерод оксида составит:

- C_{ср.}= 0,8870/1,888 = 0,470 мг/м³ или 470 мкг/м³ (расчетная точка № 21);
- C_{ср.}= 0,8528/1,888 = 0,452 мг/м³ или 452 мкг/м³ (расчетная точка № 21).

Следовательно, полученные расчетные значения концентраций показали, что загрязнение атмосферного воздуха в анализируемых точках не превышает нормативов ЭБК, приведенных в таблице Е.43 приложения Е к ЭкоНиП 1717.01.06-001-2017.

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 6, ВАРИАНТ 2 Вариант расчета: ООПТ

Расчет проведен на зиму

Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость	5 M/C
превышения в пределах 5%)	

Параметры источников выбросов

V	Na	No							ОЧНИКО				14 .	1 4-		1				
	№ пл.		№ ис	ст. Наименование источника	Bap.	LNu	Высота					Темп.	Коэф		орд.		орд.	Коорд.	Коорд.	Ширина
при	1	цеха					ист. (м)	устья (і			и/с) ī	「BC (°C)	рел.	X1-	ос. (м)	Y1-0	ос. (м)	Х2-ос. (м)	Y2-ос. (м)	источ.
расч.									(куб.м/с											(M)
-	0	1		4Дымовая труба	1		100,0				784	166	1,	0	303,0)	-374,0	303,0	-374,0	0,00
		Код		Наименование вещес	гва		Выброс, (Зыброс, (т/г	·) F	Лето	o: Cm/∏	ļK >	(m	Um 3	Вима:	Cm/∏,	ДК Хт	Um	
		01		Кадмий и его соедине	ния		0.00014	50	0,0000000	1		0,000	16	56,7	4,4		0,000			
		01	40	Медь и его соединения (в пер	есчете на	1	0.001000	00	0,0000000	1		0,000	16	56,7	4,4		0,00	1 695,8	4,7	
				медь)																
		01	64	Никель оксид			0.129199	97	0,0000000	1		0,008	16	56,7	4,4		0,00	7 1 695,8	4,7	
		01		Ртуть (Ртуть металличе	ская)		0.00015	50	0,0000000	1		0,000	16	56,7	4.4		0.00	1 695,8	4.7	
		01	84	Свинец и его соедине	RNH		0.003646	60	0,0000000	1		0,002	16	56,7	4.4		0.00	2 1695,8	4.7	
		02	28	Хрома трехвалентные соедин) -	0.001000	00	0,0000000	1		0,000	16	56,7	4.4		0,000	1 695,8	4,7	
				ресчете на хром)	•				-			•		•	•		•	•	•	
		02	29	Цинк и его соединения (в пер	есчете на		0.000000	00	0.0000000	1		0,000	16	56,7	4,4		0,000	1 695,8	4,7	
				цинк)										•			-,			
		030	01	Азота диоксид (Азот (IV)	оксид)		41.66000	00	0,0000000	1		0,099	16	56,7	4.4		0.094	4 1 695,8	4,7	
		033	25	Мышьяк и его соедине	ния п		0.000000	00	0.0000000	1		0,000		56,7	4.4		0.000			
		033	28	Углерод (Сажа)			0.673000		0,0000000	1,5		0,004		49,6	4.4		0.004	•		
		033	30	Сера диоксид (Ангидрид сер	энистый)		142.25000		0.0000000	1		0,169			4.4		0.16			
		033	37	Углерод оксид	•		11.07000	00	0.0000000	1		0,001		56,7	4,4		0.00			
		070	03	Бенз/а/пирен (3,4-Бензпі	ирек)		0.000209		0.0000000	1		0,025		56.7	4.4		0,024			
		290		Мазутная зола теппоэлектро			0.393000		0.0000000	1,5		0,017		,	4,4		0,017	•	•	
_	0	11		5Дымовая труба	1					7 10,233	317	188,8	1,0		533,0	1	-162,0	533,0		0,00
		Код з	B-Ba	Наименование вещест	rBa		Выброс (Зыброс, (т/г		Лето			(m		Вима:	Cm/∏		Um	0,00
		012		Кадмий и его соедине			0.001064		0.0000000	' i	21010	0,000		94,2	6	minu.	0,000	,		
		014		Медь и его соединения (в пер		ı	0.008000		0,0000000	i		0.000	. 3⊿	94,2	6		0,000			
		٠.		медь)			•	•	0,000000	•		0,000		U-1,E	•		0,000	0 000,0	0,0	
		016	54	Никель оксид			0.950446	30	0.0000000	1		0.010	3.4	94,2	6		0.010	3 565.8	6.3	
		018		Ртуть (Ртуть металличе	жая)		0.001083		0.0000000	4		0,000		94.2	6		0.000		6.3	
		018		Свинец и его соединен			0.026821		0.0000000	i		0,003		94,2	6		0,003		•	
		022		Хрома трехвалентные соедине		_	0.010200		0,0000000	1		0,000		94,2 94,2	6		0,000			
		V	-0	ресчете на хром)	onna (b ne		0.010200	,,	0,0000000	'		0,000		34,2	U		0,000	3 303,0	0,3	
		022	29	Цинк и его соединения (в пер	осиото из		0.034000	30	0,0000000	1		0.000	3.4	94,2	6		0.000	3 565.8	6.3	
		V	-0	цинк)	C04010 818		0.054000	,0	0,0000000	'		0,000	, J4	34,2	U		0,000	3 303,0	0,5	
		030	11	Азота диоксид (Азот (IV) с	vcian)		206.58000	ากก	0.0000000	1		0,091	2.4	94.2	6		0.087	7 3 565,8	6,3	
		032		Мышьяк и его соедине	,		0.000000		0,0000000	1		0,000		94,2	6		0.000		•	
		032		Углерод (Сажа)	(VIZI		4.954000		0.0000000	1,5		0.005		57,5	6		0,000	•	•	
		033		Сера диоксид (Ангидрид сер	нистый)		1044.3570		0,00000000	1,5		0,000		94,2	6		0,000			
		033		Углерод оксид	illinoi bizi)		53.37000		0.0000000	1		0,001		94,2	6		0.001			
		070		Бенз/а/пирен (3,4-Бензла	ineu)		0.001372		0.0000000	1		0,030		94,2 94.2	6		0.029	•		
		290		Мазутная зола теплоэлектро			2.887000		0,0000000	1,5		0,030		5 4 ,2 57,5	6		0,023			
%		1		В6Вытяжка ЦЦР (сварочный	4	1					247	20	1,0		472,0	3	-130,0	472,0		0.00
70	٧	'1	•	, , , , ,	- '	'	0,5	U,C	U,30	3 1,343	217	20	1,0	ή	472,0	1	- 130,0	472,0	-130,0	0,00
	1	16		пост)			D 6 1	-7-3	 	ــــــــــــــــــــــــــــــــــــــ		<u> </u>	ile *			<u>L</u>				
		Коде		Наименование вещест			Выброс, (і		выброс, (т/г		Лето		•			вима:	Cm/∏		Um	
		030		Азота диоксид (Азот (IV) с	ксид)		0.003200	-	0,00000000	1		0,023			0,5		0,041		0,7	
0/ 7		033		Углерод оксид			0.003692		0,0000000	1		0,001		7,1	0,5		0,002		0,7	
%	0	1	3	37 Вытяжка РММ (сварочный	1	1	3,0	0,4	0,200	6 1,63	393	20	1,0)	350,0		-91,0	350,0	-91,0	0,00
				пост)												<u></u>				
		Код в		Наименование вещест			Выброс, (і		выброс, (т/г) F	Лето	: Cm/∏	КХ		Um 3	има:	Cm/∏/	IK Xm	Um	
•		030)1 -	Азота диоксид (Азот (IV) с	ксид)		0.003200	0	0,0000000	1		0,142	1	7,1	0,5		0,160	17,1	8,0	
		033	37	Углерод оксид	•		0.003692	20	0,0000000	1		0,008	17		0,5		0,009		0,8	
												•						•		

	1	0	1 1	23 Дымовая труба 1	1 60 0	7.00 650.0	46.0	osel	400	4.0	FOO	iol:	070.0	500.0	070.6	0.00
		U.	Код в-ва		1 60,0	7,00 650,6	16,9		103	1,0	580	•	-276,0	580,0	-276,0	0,00
			од в-ва 0183	Наименование вещества Ртуть (Ртуть металлическая)	Выброс, (г/с)	Выброс, (т/г)	-	Лето:		Xm	Um	Зима:		Xm	Um	
			0301		0.0000202	0,0000000	1		0,000	1 603,4	8,1		0,000	1 631,6	8,7	
			0337	Азота диоксид (Азот (IV) оксид) Углерод оксид	44.7050000 134.1150000	0,0000000	1		0,135	1 603,4			0,130	1 631,6	8,7	
			0410	Уптерод оксид Метан	67.0580000	0,0000000 0,000000	1		0,020	1 603,4	•		0,019		8,7	
			0703	метан Бенз/а/пирен (3,4-Бензпирен)	0.0000019	0,0000000	1		0,001 0,000	1 603,4 1 603,4	8.1 8.1		0,001 0,000	•	8,7 8,7	
+	\top	0	2	3 Дымовая труба 1	1 100.0	7.00 338.89	8,80	588	133	1,0	425	n	-152,0	425,0	-152,0	0,00
			Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	<u>0,00</u>	Лето:	Cm/ПДК	Xm	Um	<u>,о</u> Зима:		Xm	152,0 Um	0,00
		•	0183	Ртуть (Ртуть металлическая)	0.0000260	0.0000000	1	Hero.	0,000	1 847,2	5,1	эима.	0,000	1 896,3	5,4	
			0301	Азота диоксид (Азот (iV) оксид)	43.3200000	0.0000000	1		0.082	1 847,2	5,1		0.078	1 896,3	5,4 5,4	
			0330	Сера диоксид (Ангидрид сернистый)	5.2480000	0,0000000	1		0,005	1 847,2	5,1		0,005	1 896,3		
			0337	Углерод оксид	38.6640000	0,0000000	i		0.004	1 847,2	5,1		0.003	1 896.3	5,4	
			0703	Бенз/а/пирен (3,4-Бензпирен)	0.0001800	0,0000000	1		0,017	1 847.2	5,1		0,016	1 896,3	5,4	
+		0	2	4Дымовая труба 1	1 100.0	6,00 76,65	2,71	094	225	1,0	303	Ω	-374,0	303.0	-374,0	0,00
			Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F	Лето:	Ст/ПДК	Xm	Um	Зима:		Xm	Um	0,00
			0124	Кадмий и его соединения	0.0001530	0.0000000	1	31010.	0,000	1 409,1	3,5	Ommu.	0,000	1 437,3	3,7	
			0140	Медь и его соединения (в пересчете на	0.0011040	0,0000000	1		0.000	1 409.1			0,000	1 437,3	3,7	
				медь)		,	-		-,	, .	-,-		0,000	,.	91.	
			0164	Никель оксид	0.1369270	0,0000000	1		0,011	1 409,1	3,5		0.011	1 437,3	3,7	
			0183	Ртуть (Ртуть металлическая)	0.0001530	0,0000000	1		0,000	1 409,1	3,5		0,000	1 437,3	3,7	
			0184	Свинец и его соединения	0.0038640	0,0000000	1		0,003	1 409,1	3,5		0,003	1 437,3	3,7	
			0228	Хрома трехвалентные соединения (в пересчете на хром)	0.0014720	0,0000000	1		0,000	1 409,1	3,5		0,000	1 437,3	3,7	
			0229	Цинк и его соединения (в пересчете на цинк)	0.0049680	0,0000000	1		0,000	1 409,1	3,5		0,000	1 437,3	3,7	
			0301	Азота диоксид (Азот (IV) оксид)	14.8600000	0,0000000	1		0,049	1 409,1	3,5		0,047	1 437.3	3,7	
			0325	Мышьяк и его соединения	0.0000610	0,0000000	1		0,000	1 409,1	3,5		0.000	1 437,3	3,7	
			0328	Углерод (Сажа)	0.7140000	0,0000000	1,5		0,006	1 233	3,5		0,006	1 257,7	3,7	
			0330	Сера диоксид (Ангидрид сернистый)	72.1860000	0,0000000	1		0,119	1 409,1	3,5		0,114	1 437,3	3,7	
			0337	Углерод оксид	6.3690000	0,0000000	1		0,001	1 409,1	3,5		0,001	1 437,3	3,7	
			0703	Бенз/а/пирен (3,4-Бензпирен)	0.0002690	0,0000000	1		0,044	1 409,1	3,5		0,043	1 437,3	3,7	
			2902	Твердые частицы	1.2190000	0,0000000	3		0,010	704,6	3,5		0,010	718,7	3,7	
	_		2904	Мазутная зола теплоэлектростанций	0.3560000	0,0000000	1,5		0,022	1 233	3,5		0,021	1 257,7	3,7	
+		0	2	5Дымовая труба 1	1 180,0	9,60 479,73	6,627		161	1,0	533	,0	-162,0	533,0	-162,0	0,00
			Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F	Лето:	Cm/ПДК	Χm	Um	Зима:	Ст/ПДК	Χm	Um ·	
			0124	Кадмий и его соединения	0.0010610	0,0000000	1		0,000	3 062,8	4,8		0,000	3 142,4	5,1	
			0140	Медь и его соединения (в пересчете на медь)	0.0076400	0,0000000	1		0,000	3 062,8	4,8		0,000	3 142,4	5,1	
			0164	медь) Никель оксид	0.9475740	0,0000000	1		0,014	3 062.8	4.8		0,013	3 142,4	5.1	
			0183	Ртуть (Ртуть металлическая)	0.0010610	0,0000000	1		0.000	3 062,8	4,8 4,8		0,013	3 142,4	5,1 5,1	
			0184	Свинец и его соединения	0.0267400	0,0000000	1		0,004	3 062,8	4,8		0,004	3 142,4	5,1 5,1	
			0228	Хрома трехвалентные соединения (в пе-	0.0101870	0,0000000	i		0,000	3 062,8	4,8		0,004	3 142,4	5,1 5,1	
				ресчете на хром)	0.0101010	0,000000	•		0,000	0 002,0	4,0		0,000	3 142,4	3, 1	
			0229	Цинк и его соединения (в пересчете на цинк)	0.0343800	0,0000000	1		0,000	3 062,8	4,8		0,000	3 142,4	5,1	
			0301	Азота диоксид (Азот (IV) оксид)	155.2680000	0,0000000	1		0,089	3 062,8	4,8		0,084	3 142,4	5.1	
			0325	Мышьяк и его соединения	0.0004240	0,0000000	i		0,000	3 062,8	4,8		0,004	3 142,4	5,1	
			0328	Углерод (Сажа)	4.9380000	0,0000000	1,5		0,007	2 680	4,8		0,000	2 749.6	5,1 5,1	
			0330	Сера диоксид (Ангидрид сернистый)	499.5470000	0,0000000	1		0,143	3 062.8	4.8		0,136	3 142.4	5,1	
			0337	Углерод оксид	44.0720000	0,0000000	i		0.001	3 062.8	4,8		0.001	3 142.4	5,1 5,1	
			0703	Бенз/а/пирен (3,4-Бензпирен)	0.0016860	0,0000000	i		0.048	3 062.8	4.8		0,046	3 142,4	5,1	
			2902	Твердые частицы	8.4350000	0,0000000	3		0,012	1 531,4	4,8			1 571,2	5,1	
				•		•	_								• •	

		•	•	•		•		•					
		2904	Мазутная зола теплоэлектростанций	2.4660000	0.0000000	1,5	0.026	2 680	4,8	0.025	2 749,6	5.1	
+	0	2	123 Дымовая труба 1	1 60,0		21,73498	110	1,0	580,0	-276.0	580,0		0.00
		Код в-в		Выброс, (г/с)				Xm	ооо,о Um Зима:			276,Uj Um	0,00
		0183	Ртуть (Ртуть металлическая)	0.0000230	0,0000000	1	0,000	1 784,2		0.000	1 807,5		
		0301	Азота диоксид (Азот (IV) оксид)	52.3490000	0,0000000	i	0,000	1 784,2		0,000	1 807,5		
		0337	Углерод оксид	157.0470000	0.0000000	i	0,120	1 784,2		0,124	1 807,5		
		0703	Бенз/а/пирен (3,4-Бензпирен)	0.0000020	0,0000000	i	0,000	1 784,2		0,000	1 807,5		
+	0	2	124 Вытяжка гаража-стоянки 1 пождепо	1 7,8	0,50 1,532	7,80241	20	1,0	629,0	79,0	629,0		0,00
		Код в-в		 Выброс, (г/с)	Выброс, (т/г)	<u> </u>		Xm		Om /0.016			
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0,001	57,8		Cm/ПДК	Xm ZE 6	Um	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0.0000000	1	0.000	57,8 57,8	0,7 0.7	0,001	75,6	1,1	
		0328	Углерод (Сажа)	0.0000730	0,0000000	1,5	0,000	57,8 50.6	0,7 0.7	0,000 0.000	75,6	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1,5	0.000	50,8 57.8	0,7 0,7	0,000	66,1	1,1	
		0337	Углерод оксид	0.0132820	0.0000000	1	0,002	57,8	0,7	0,000	75,6 75,6	1,1 1,1	
_		2754	Углеводороды предельные алифатическо- го ряда С11-С19	0.0019660	0,0000000	i	0,002	57,8	0,7	0,001	75,6 75,6	1,1	
+	0		125 Вытяжка гаража-стоянки 1 пождепо	1 7,8	0,50 1,532	7,80241	20	1,0	625,0	82,0	625,0	82,0	0,00
		Код в-ва	i manime treatment and the	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0,001	57,8	0,7	0.001	75.6	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	57.8	0,7	0,000	75,6	1,1	
		0328	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	50.6	0,7	0,000	66.1	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
		0337	Углерод оксид	0.0132820	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
: 1		2754	Углеводороды предельные алифатическо- го ряда С11-С19		0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
+	0		126Вытяжка гаража-стоянки 1 пождепо	1 7,8	0,32 1,667	21,39068	20	1,0	617,0	88,0	617,0	88,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
		0328 0330	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	87.4	1,1	0,000	87,9	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
		2754	Углерод оксид	0.0132820	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
+ [0		Углеводороды предельные алифатическо- го ряда С11-С19	0.0019660	0,0000000	1	0,001	99,9	1,1 	0,001	100,4	1,1	·
<u> </u>	U	∠ Код в-ва	27 Вытяжка ТО (пождепо) 1	1 7,8		11,19058	20	<u>1</u> ,0	604,0	83,0	604,0	83,0	0,00
		код в-ва 0301	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Χm	Um Зима:	Ст/ПДК	Xm	Um	
		0304	Азота диоксид (Азот (IV) оксид) Азот (II) оксид (Азота оксид)	0.0002080	0,0000000	1	0,001	44,5	0,5	0,001	37,7	0,6	
		0328	Углерод (Сажа)	0.0000340	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000130	0,0000000	1,5	0,000	38,9	0,5	0,000	32,9	0,6	
		0337	Углерод оксид	0.0000390	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
		2754	Углеводороды предельные алифатическо-	0.0076320	0,0000000	1	0,002	44,5	0,5	0,003	37,7	0,6	
+	0		<u>го ряда</u> С11-С19	0.0011070	0,0000000	1	0,001	44,5	0,5	0,002	37,7	0,6 	
		!	28 Вытяжка мастерской поста 1 (пождепо)	1 6,0	0,20 0,125	3,97887	20	1,0	590,0	88,0	590,0	88,0	0,00
		Код в-ва 2908	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/⊓ДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		2300	Пыль неорганическая, содержащая менее 70% SiO2	0.0049500	0,0000000	2	0,073	25,7	0,5	0,156	16,7	0,5	

+ (2 1	29 Вытяжка участка мойки 1 автомобилей (пождепо)	1 8,0	0,50 1,389	7,07412	20	1,0	645,0	155,0	645,0	155,0	0,00
	Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима	ı: Сm/ПДК	Xm	Um	
	0301	Азота диоксид (Азот (IV) оксид)	0.0000700	0,0000000	1	0,000	52.4	0,6	0,000	71.9	1.1	
	0304	Азот (II) оксид (Азота оксид)	0.0000110	0,0000000	1	0,000	52.4	0,6	0.000	71.9	1,1	
	0328	Углерод (Сажа)	0.0000040	0,0000000	1,5	0,000	45.9	0.6	0,000	62.9	1.1	
	0330	Сера диоксид (Ангидрид сернистый)	0.0000130	0,0000000	ĺ	0,000	52.4	0,6	0.000	71,9	1,1	
	0337	Углерод оксид	0.0025530	0,0000000	1	0,000	52,4	0.6	0.000	71,9	1,1	
	2754	Углеводороды предельные апифатическо- го ряда С11-С19	0.0003710	0,0000000	1	0,000	52,4	0,6	0,000	71,9	1,1	

Выбросы источников по веществам

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
пл.	цех	ист.			(r/c)							
							Cm/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520
0	1	5	1	-	206,5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263
0	1	36	1	%	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921
0	1	37	1	%	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875
0	1	123	1	-	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327
0	2	3	1	+	43.3200000	1	0,0824	1847,22	5,0588	0,0783	1896,26	5,4356
0	2	4	1	+	14.8600000	1	0,0490	1409,11	3,5465	0,0471	1437,33	3,7100
0	2	5	1	+	155.2680000	1	0,0888	3062,80	4,8176	0,0844	3142,41	5,1281
0	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041
0	2	124	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	<u>1,1179</u>
0	2	125	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179
0.	2	126	1	+	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498
0	2	127	1	+	0.0002080	_1	0,0010	44,46	0,5000	0,0014	37,66	
0	2	129	1	+	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	1,0729
Итог	0:				265.8050280		0,5186			0,5396		

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº	Nº	Nº	Тип	Учет		F		Лето			Зима	
nn.	цех	ист.			(r/c)		Ст/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Ūm (м/с)
Ō	1	4	1	-	142.2500000	1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	5	1	-	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	2	3	1	+	5.2480000	1	0,0050	1847,22	5,0588	0,0047	1896,26	5,4356
0	2	4	1	+	72.1860000	1	0,1190	1409,11	3,5465	0,1144	1437,33	3,7100
0	2	5	1	+	499.5470000	1	0,1428	3062,80	4,8176	0,1358	3142,41	5,1281
0	2	124	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итог	0:				576.9813010		0,2673			0,2553		

Вещество: 0337 Углерод оксид

Nº	Nº	Nº	Тип	Учет	Выброс	F		Лето			Зима	
пл.	цех	ист.			(r/c)		_					
							Cm/ПДК	Xm	Um (м/с)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	11.0700000	1	0,0013	1656,70	4,3844	0,0013	1695,84	4,6520
0	1	5	1	-	53.3700000	1	0,0012	3494,24	6,0080	0,0011	3565,84	6,3263
0	1	36	1	%	0.0036920	1	0,0013	37,05	0,5000	0,0024	28,68	0,6921
0	1	37	1	%	0,0036920	1	0,0082	17,10	0,5000	0,0092	17,15	0,7875
0	1	123	1	-	134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	8,7327
0	2	3	1	+	38.6640000	1	0,0037	1847,22	5,0588	0,0035	1896,26	5,4356
0	2	4	1	+	6.3690000	1	0,0011	1409,11	3,5465	0,0010	1437,33	3,7100
0	2	5	1	+	44.0720000	1	0,0013	3062,80	4,8176	0,0012	3142,41	5,1281
. 0	2	123	1	+	157.0470000	1	0,0192	1784,23	9,6133	0,0186	1807,49	10,2041
0	2	124	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	125	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	126	1	+	0.0132820	1	0,0009	99,86	1,1230	0,0009	100,40	1,1498
0	2	127	1	+	0.0076320	1	0,0018	44,46	0,5000	0,0025	37,66	0,5898
0	2	129	1	+	0.0025530	1	0,0005	52,42	0,5748	0,0003	71,89	1,0729
Итог	0:				246.2094150		0,0424			0,0425		

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	дельно Допу Концентрац		*Поправ. коэф. к ПДК/ОБУ В		новая центр.
		Тип	Спр. значение	Исп. в расч.		Учет	Интерп.
	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

№ поста	Наименование	Координа	ты поста
		×	у
1 ул.Ке	едышко, 45	-480	5800

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013
0337	Углерод оксид	0.257	0.257	0.257	0.257	0.257
0703	Бенз/а/лирен (3,4-Бензпирен)	7.7E-7	7.7E-7	7.7E-7	7.7E-7	7.7E-7
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
2ул.	Тростенецкая, 4			_ <u> </u>	-4185	

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юr	Запад			
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6			
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1.73L-0 1E-7	1.75E-0 1E-7	1.75E-6 1E-7			
3 ул.	Каховская, 72				-5200	51			

(од в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1.75E-0
4 ул.	Жилуновича, 3			i	-730	<u> </u>

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6			
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1.73L-0 1E-7	1.75E-0			
5 ул.	Скорины, 18	 -			2044	45			

Код в-ва	Наименование вещества		Фонс	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад

0124	Кадмий и его соединения	1.6E-6	1,6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
6 ул	ı. Селицкого, 33				4562	-5345

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
	<u> </u>	Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1.75L-0
7 ул.	Тростенецкая, 105			<u></u>	-3840	-17(

Код в-ва	Наименование вещества	Фоновые концентрации								
		Штиль	Север	Восток	Юг	Запад				
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6				
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5				
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073				
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7				
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028				
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871				
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6				
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1.75L-0 1E-7	1.752-6 1E-7				
8 пр.	Партизанский, 66 А			 _	-345	-101				

Код в-ва	Наименование вещества	Фоновые концентрации								
	<u> </u>	Штиль	Север	Восток	Юг	Запад				
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6				
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5				
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081				
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7				
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028				
0337	Углерод оксид	1.315	1.315	1.315	1.315					
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6			1.315				
2904	Мазутная зола теплоэлектростанций	1.75E-0 1E-7	1.75E-6 1E-7	1.75E-6 1E-7	1.75E-6 1E-7	1.75E-6 1E-7				

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области Расчетные точки

Nº	Координа (м		Высота (м)	Тип точки	Комментарий
	X	Y	, ,		
21	6835,00	290,00	2	точка пользователя	
22	8785,00	4040,00		точка пользователя	

Результаты расчета по веществам (расчетные точки)

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Коорд Х(м)	Коорд Ү(м)		Концентр. (мг/куб.м)	Напр.	 	Фон до искл.	Тип точки
21	6835	290		0.0962	265	_	0.07181	
22	8785	4040	2	0.0884	243		0.07245	

- In the Hand of the Part of the Hand of t												
		Высота	Концентр.	Напр.	Скор.	Фон	Фон до	Тип				
		(M)	(мг/куб.м)	ветра	ветра	(мг/куб.м)	искл.	точки				
		2	0.0748	265	5,00	0.00526	0.02629	0				
8785	4040	2	0.0525	243	5,00	0.00518	0.02591	0				
	Коорд Х(м) 6835 8785	Коорд Коорд X(м) Y(м) 6835 290	Коорд Коорд Высота X(м) Y(м) (м) 6835 290 2	Коорд Коорд Высота Концентр. X(м) Y(м) (м) (мг/куб.м) 6835 290 2 0.0748	Коорд Коорд Высота Концентр. Напр. X(м) Y(м) (м) (мг/куб.м) ветра 6835 290 2 0.0748 265	Коорд X(м) Коорд Y(м) Высота (м) Концентр. (мг/куб.м) Напр. ветра ветра 20.0748 Скор. ветра 25	Коорд X(м) Коорд Y(м) Высота (мг/куб.м) Концентр. Напр. Ветра (мг/куб.м) Скор. Фон ветра (мг/куб.м) 6835 290 2 0.0748 265 5,00 0.00526	Коорд X(м) Коорд Y(м) Высота (м) Концентр. (мг/куб.м) Напр. ветра Скор. ветра ветра (мг/куб.м) Фон искл. 6835 290 2 0.0748 265 5,00 0.00526 0.02629				

			Веще	ство: 0337	Углерод оксид						
Nº	Коорд			Концентр.	•	Скор.		Фон до	Тип		
	Х(м)	Y(M)	(M)	(мг/куб.м)	ветра	ветра	(мг/куб.м)	искл.	точки		
21	6835	290	2	0.8909	265	5,00	0.84605	0.86045	0.		
22	8785	4040	2	0.8552	242	4,00	0.82614	0.83564	0		

В соответствии с «Методикой расчета приземных концентраций загрязняющих веществ разных периодов осреднения применительно к крупным точечным источникам. 0212.22-99», утвержденной приказом Минприроды РБ от 30 декабря 1999г. № 390, для пересчета разнопериодных (в пределах суток) концентраций применимо эмпирическое выражение

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{\tau_2}{\tau_1}\right)^{0,2}$$

Для среднечасовых:

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{60}{20}\right)^{0.2} = 1,246; \quad C_2(\tau_2) = \frac{C_1(\tau_1)}{1,246},$$

где $C_1(\tau_1)$ и $C_2(\tau_2)$ - концентрации периодов осреднения τ_1 = 20 мин. и τ_2 = 60 мин: $C_1(\tau_1)$ - максимально-разовая и $C_2(\tau_2)$ - среднечасовая.

Таким образом, среднечасовая концентрация диоксида азота по варианту 2 составит:

- C_{ср.}= 0,0962/1,246 = 0,077 мг/м³ или 77 мкг/м³ (расчетная точка № 21);
- C_{ср.}= 0,0884/1,246 = 0,071 мг/м³ или 71 мкг/м³ (расчетная точка № 22).

Среднечасовая концентрация серы диоксида составит:

- C_{ср.}= 0,0748/1,246 = 0,060 мг/м³ или 60 мкг/м³ (расчетная точка № 21);
- C_{ср.}= 0,0525/1,246 = 0,042 мг/м³ или 42 мкг/м³ (расчетная точка № 22).

Для средних за 8 часов:

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{480}{20}\right)^{0,2} = 1,888; \quad C_2(\tau_2) = \frac{C_1(\tau_1)}{1,888},$$

где $C_1(\tau_1)$ и $C_2(\tau_2)$ - концентрации периодов осреднения τ_1 = 20 мин. и τ_2 = 480 мин: $C_1(\tau_1)$ - максимально-разовая и $C_2(\tau_2)$ - средняя за 8 часов.

Таким образом, средняя за 8 часов концентрация углерод оксида составит:

- С_{ср.}= 0,8909 /1,888 = 0,472 мг/м³ или 472 мкг/м³ (расчетная точка № 21);
- C_{cp.}= 0,8552 /1,888 = 0,453 мг/м³ или 453 мкг/м³ (расчетная точка № 21).

Следовательно, полученные расчетные значения концентраций показали, что загрязнение атмосферного воздуха в анализируемых точках не превышает нормативов ЭБК, приведенных в таблице Е.43 приложения Е к ЭкоНиП 1717.01.06-001-2017.

УПРЗА ЭКОЛОГ, версия 3.00 Copyright © 1990-2009 ФИРМА "ИНТЕГРАЛ"

Серийный номер 01-01-0370, ГП "БелНИПИэнергопром"

Предприятие номер 137; Минская ТЭЦ-3 Город МИНСК

Вариант исходных данных: 9, ВАРИАНТ 3

Вариант расчета: ООПТ Расчет проведен на зиму

Расчетный модуль: "ОНД-86 стандартный"

Расчетные константы: E1= 0.01, E2=0.01, E3=0.01, S=999999.99 кв.км.

Метеорологические параметры

Средняя температура наружного воздуха самого жаркого месяца	24° C
Средняя температура наружного воздуха самого холодного месяца	-5.9° C
Коэффициент, зависящий от температурной стратификации атмосферы А	160
Максимальная скорость ветра в данной местности (повторяемость	5 м/с
превышения в пределах 5%)	

Параметры источников выбросов

Учет	Nº nn.	NΩ	№ ист	. Наименование источника	Вар.	Тип	Высота	Диаме	гр Объем	Скоросты	Темп.	Коэф	. 1	Коорд.	Коорд.	Коорд.	Коорд.	Ширина
при		цеха			۱.		ист. (м)	устья (м) ГВС	ГВС (м/с)		рел.		1-ос. (м)				источ.
расч.								,	(куб.м/с)	,		[.			` '	`, '	, ,	(M)
	0			Дымовая труба	1	1,	100,0		00 186		166	1,	0	303,0	-374,0	303,0	-374,0	0,00
		Код		Наименование вещества			Зыброс, (Выброс, (т/г)	F Ле	то: Ст/П	дк 🗀	Xm	Um 3	има: Ст/П/	ŢΚ Xm	Um	
		01:		Кадмий и его соединения			0.00014		0,0000000	1	0,00		556,7		0,000			•
		01	40	Медь и его соединения (в перес			0.001000	00	0,0000000	1	0,00	0 16	356,7	4,4	0,000	1 695,8	4,7	
		04	C.4	медь)			0.400404											
		010 010		Никель оксид	٠.		0.129199		0,0000000	1	0,00		556,7		0,007		,	
		01:		Ртуть (Ртуть металлическая	1)		0.000155		0,0000000	1	0,00		356,7		0,000		•	
		02:		Свинец и его соединения Хрома трехвалентные соединени	a (n ao		0.003646		0,0000000	1	0,00		556,7		0,002			
		UZ.	20	ресчете на хром)	я (в пе∙	•	0.001000	JU	0,0000000	•	0,00	0 16	556,7	4,4	0,000	1 695,8	4,7	
		022	29	Цинк и его соединения (в пересч	ете на		0.000000	00	0.0000000	1	0,00	0 16	556,7	4.4	0,000	1 695,8	4,7	
				цинк)				-	_,	•	0,00	•	,,,,	•••	0,000	, , , , , ,	-,,,	
		030		Азота диоксид (Азот (IV) оксы	ιд)		41.66000	00	0,0000000	1	0,09	9 16	556,7	4.4	0.094	1 695.8	4,7	
		032		Мышьяк и его соединения			0.000000		0,0000000	1	0,00	0 16	556,7	4,4	0,000	1 695,8		
		032		Углерод (Сажа)			0.673000		0,0000000	1,5	0,00		149,6		0,004	1 483,9	4,7	
		033		Сера диоксид (Ангидрид серни	тый)		42.25000		0,0000000	1	0,16		556,7		0,161			
		033		Углерод оксид			11.07000		0,0000000	1	0,00		56,7		0,001			
		070		Бенз/а/пирен (3,4-Бензпире			0.000209		0,0000000	1_	0,02		56,7		0,024			
		290		Мазутная зола теплоэлектроста			0.393000		0,0000000	1,5	0,01		49,6		0,017			
	0	<u> </u>		Дымовая труба	1	1	180,0			10,23317	188,8			533,0		533,0		0,00
		Код в 012		Наименование вещества Кадмий и его соединения		-	Выброс, (і		Выброс, (т/г)	FЛет			Km		има: Ст/ПД		Um	
		014		Медь и его соединения (в пересч	676 46		0.001064		0,0000000	1 1	0,00		194,2		0,000	3 565,8	6,3	
		01-	, 0	медь и его соединелия (в пересч	сте па		0.000000	,0	0,0000000	•	0,00	0 34	94,2	. 0	0,000	3 565,8	6,3	
		016	64	Никель оксид			0.950446	60	0.0000000	1	0.01	ก 3⊿	94,2	6	0.010	3 565.8	6,3	
		018		Ртуть (Ртуть металлическая	ń		0.001083		0.0000000	i	0.00		94.2		0,000			
		018		Свинец и его соединения	,		0.026821		0.0000000	i	0,00		94,2		0,003		6,3	
		022	28	Хрома трехвалентные соединени:	я (в пе-		0.010200		0,0000000	i	0,00		94,2		0,000			
				ресчете на хром)	•				•		-,		,-		5,555	2 222,2	-,-	
		022	29	Цинк и его соединения (в пересч	ете на		0.034000	Ю	0,0000000	1	0,00	3 4	94,2	6	0,000	3 565,8	6,3	
				цинк)		_												
		030		Азота диоксид (Азот (IV) окси	Д)		06.58000		0,0000000	1	0,09	1 34	94,2	6	0,087			
		032		Мышьяк и его соединения			0.000000		0,0000000	1	0,000		94,2		0,000			
		032 033		Углерод (Сажа) Сера диоксид (Ангидрид сернис			4.954000 044.3570(0,0000000	1,5	0,00		57,5	6	0,005		6,3	
		033		Углерод оксид	1 DIN)		53.37000(0,0000000	1 1	0,229 0,00		94,2		0,220			
		070		Бенз/а/пирен (3,4-Бензпирен	ň		0.001372		0,0000000	1	0,03		94,2 94,2		0,001 0,029			
		290		Мазутная зола теплоэлектроста			2.887000		0,0000000	1,5	0,03		57.5		0,028		6,3 6.3	
%	0	1		Вытяжка ЦЦР (сварочный	1	1	6,5	0,5		1,54317	20	1,0		472,0	-130,0	472,0	-130,0	0,00
				пост)					- 0,000	1,0 70 17		·,·			-100,0	712,0	-130,0	
		Код в		Наименование вещества			ыброс, (г		Зыброс, (т/г)	F Лет			(m		има: Ст/П		Um	
		030		Азота диоксид (Азот (IV) окси	д)		0.003200		0,0000000	1	0,02		7,1	0,5	0,041		0,7	
		033	7	Углерод оксид			0.003692	.0	0,0000000	1	0,00	1 3	7,1	0,5	0,002		0,7	

	ام ام	0=D D1016 / V 4	4 00	0.40	4.0000	20	4.0	250.0	04.0	250.0	04.0	0.00
%	0 1	37 Вытяжка РММ (сварочный 1 пост)	1 3,0	0,40 0,206	1,6393	20	1,0	350,0	-91,0	350,0	-91,0	0,00
	Код і		Выброс, (г/с)	Выброс, (т/г)	F Лето:		Xm	Um Зима		Xm	Um	
	030		0.0032000	0,0000000	1	0,142	17,1	0,5	0,160	17,1	8,0	
	033		0.0036920	0,0000000	1	0,008	17,1	0,5 580,0	0,009 -276,0	17,1 580,0	0,8 -276,0	0,00
ــــــــــــــــــــــــــــــــــــــ	0 1	123 Дымовая труба 1	1 60,0	7,00 650,6	16,9055 F Лето:	103 Ст/ПДК	1,0 Xm	<u> </u>		Xm	-276,0 ₁ Um	0,00
	Код I 018		Выброс, (r/c) 0.0000202	Выброс, (т/г) 0,0000000	F Лето:	0,000	1 603,4	8,1	0,000	1 631,6	8,7	
	030		44.7050000	0.0000000	i	0,135	1 603,4	8,1	0,130	1 631 6	8,7	
	03:		134.1150000	0,0000000	1	0,020	1 603,4	8,1	0,019	1 631 6	8,7	
	04	• • • • • • • • • • • • • • • • • • • •	67.0580000	0,0000000	1	0,001	1 603,4	8,1	0,001	1 631,6	8,7	
	070		0.0000019	0,0000000		0,000	1 603,4		0,000	1 631,6	8,7	
+	0 2	3Дымовая труба1	1 100,0	7,00 336,1	8,73338	152	1,0	425,0	-152,0	425,0	-152,0	0,00
	Код (Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима		Xm	Um	
	012		0.0004740	0,0000000	1	0,000	1 875	5,3	0,000	1 919,1	5,6 5.6	
	014	медь)	0.0034160	0,0000000	1	0,001	1 875	5,3	0,001	1 919,1	5,6	
	016		0.4237080	0,0000000	1	0,020	1 875	5,3	0,019	1 919,1	5,6	
	018		0.0004850	0,000,000	1 1	0,000	1 875 1 875	5,3	0,000 0,005	1 919 1 1 919 1	5,6 5,6	
	018 022		0.0119570 0.0045550	0,0000000 0,0000000	1	0,006 0,000	1 875	5,3 5,3	0,000	1 919,1	5,6 5,6	
		ресчете на хром)		•	-	·		•	·	1 919,1	·	
	022	цинк)	0.0153730	0,0000000	1	0,000	1 875	5,3	0,000	•	5,6	
	030		49.6000000	0,0000000	1	0,092	1 875	5,3	0,088	1 919,1	5,6	
	032		0.0001900	0,0000000	1	0,000 800,0	1 875 1 640,6	5,3	0,000 800,0	1 919 1 1 679 2	5,6 5,6	
	032 033		1.7660000 223.9110000	0,0000000 0,0000000	1,5 1	0,000	1 875	5,3 5,3	0,000	1 919 1	5,6	
	033		38.1840000	0,0000000	i	0,004	1 875	5,3	0.003	1 919.1	5,6	
	070		0.0005440	0,0000000	1	0,050	1 875	5,3	0,048	1 919,1	5,6	
	290		3.3060000	0,0000000	3	0,015	937,5	5,3	0,015	959,5	5,6	
	290		1.0790000	0,0000000	1,5	0,037	1 640,6	5,3	0,036	1 679,2	5,6	
+	0 2	4 Дымовая труба 1	1 100,0	6,00 84,28	2,9808	225	1,0	303,0	-374,0	303,0	-374,0	0,00
	Код		Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима	i: Cm/ПДК 0,000	Xm 1 466,9	Um 3,8	
	018 030		0.0000050 14.3790000	0,0000000 0,000000	1	0,000 0,045	1 438,4 1 438,4	3,7 3,7	0,000	1 466.9	3,6 3,8	
	030		0.2880000	0,0000000	i	0,040	1 438,4	3,7	0,000	1 466,9	3,8	
	033		2.6360000	0,0000000	1	0,000	1 438,4	3,7	0,000	1 466,9	3,8	
	070		0.0001450	0,000000	1	0,023	1 438,4	3,7	0,022	1 466,9	3,8	
+	0 2	5Дымовая труба 1	1 180,0	9,60 446,02	6,162	166	1.0	533,0	-162,0	533,0	-162,0	0,00
	Код і		Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима		Xm	Um	
	018		0.0000310	0,0000000	1	0,000	3 023,7	4,7	0,000	3 100,9	5	
	030	1 Азота диоксид (Азот (IV) оксид)	82.2000000	0,000000 0,000000	1	0,048 0,000	3 023,7 3 023,7	4,7 4,7	0,046 0,000	3 100,9 3 100,9	5 5	
	033 033		1.6450000 15.0700000	0,0000000	1	0,000	3 023,7		0,000	3 100,9	5	
	030		0.0003250	0,0000000	i	0,000	3 023,7	4.7	0,009	3 100.9		
+	0 2	123 Дымовая труба 1	1 60,0		21,73498	110	1,0	580,0	-276,0	580,0	-276,0	0,00
<u> </u>	Код і		Выброс, (г/с)	Выброс, (т/г)	F Лето:			Um Зима		Xm	Um	
	018		0.0000230	0,0000000	1	0,000	1 784,2		0,000	1 807,5	10,2	
	0.10	5 1315 (11315 morasism rooms)										
	030 030	1 Азота диоксид (Азот (IV) оксид)	52.3490000 157.0470000	0,0000000 0,0000000	1	0,128 0,019	1 784,2 1 784,2	9,6	0,124 0,019	1 807,5 1 807,5	10,2	

	·		·										
	0	2	124 Вытяжка гаража-стоянки 1	1 7,8	0,50 1,532	7,80241	20	1,0	629,0	79,0	629,0	79,0	0,00
		Код в-ва		Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0,001	57,8	0,7	0.001	75,6	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	57,8	0,7	0,000	75,6	1,1	
		0328	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	50,6	0.7	0,000	66,1	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	57.8	0.7	0,000	75,6	1,1	
		0337	Углерод оксид	0.0132820	0,0000000	1	0,002	57.8	0.7	0.001	75.6	1,1	
		2754	Углеводороды предельные алифатическ	o- 0.0019660	0,0000000	1	0,002	57.8	0.7	0.001	75,6	1,1	
			<u>го ряда С11-С19</u>				·	,	•	-,	• - • -	.,.	
	0	2^	25 Вытяжка гаража-стоянки 1	1 7,8	0,50 1,532	7,80241	20	1,0	625,0	82,0	625,0	82,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:		Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0.001	57.8	0,7	0,001	75,6	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	57.8	0.7	0,000	75,6	1,1	
		0328	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	50.6	0.7	0.000	66.1	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	57.8	0,7	0.000	75,6	1,1	
		0337	Углерод оксид	0.0132820	0,0000000	1	0,002	57.8	0,7	0,001	75,6	1,1	
		2754	Углеводороды предельные алифатическо	- 0.0019660	0,0000000	1	0,002	57,8	0,7	0,001	75,6	1,1	
			го ряда С11-С19						•	•	•	•	
_ + _	0	2 1	26 Вытяжка гаража-стоянки 1	1 7,8		21,39068	20	1,0	617,0	88,0	617,0	88,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0004500	0,0000000	1	0,001	99,9	1,1	0.001	100,4	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000730	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
		0328	Углерод (Сажа)	0.0000210	0,0000000	1,5	0,000	87,4	1,1	0,000	87,9	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000830	0,0000000	1	0,000	99,9	1,1	0,000	100,4	1,1	
		0337	Углерод оксид	0.0132820	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
		2754	Углеводороды предельные алифатическо	- 0.0019660	0,0000000	1	0,001	99,9	1,1	0,001	100,4	1,1	
г. т		0 4	<u>го ряда С11-С19</u>										
+	0	2 1 Код в-ва	27 Вытяжка ТО 1	1 7.8		11,19058	20	1,0	604,0	83,0	604,0	83,0	0,00
		0301	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Χm	Um Зима:	Cm/ПДК	Χm	Um	_
		0301	Азота диоксид (Азот (IV) оксид)	0.0002080	0,0000000	1	0,001	44,5	0,5	0,001	37,7	0,6	
		0304	Азот (II) оксид (Азота оксид)	0.0000340	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
		0330	Углерод (Сажа)	0.0000130	0,0000000	1,5	0,000	38,9	0,5	0,000	32,9	0,6	
		0337	Сера диоксид (Ангидрид сернистый)	0.0000390	0,0000000	1	0,000	44,5	0,5	0,000	37,7	0,6	
		2754	Углерод оксид	0.0076320	0,0000000	1	0,002	44,5	0,5	0,003	37,7	0,6	
		2154	Углеводороды предельные алифатическо го ряда С11-С19	- 0.0011070	0,0000000	1	0,001	44,5	0,5	0,002	37,7	0,6	
+	0	2 1	28 Вытяжка мастерской поста 1	1 6,0	0,20 0,125	3,97887	20	1,0	590,0	88,0	590,0	88,0	0.00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	5,97007 F Лето:	Ст/ПДК	Xm		<u>00,∪ </u> Ст/ПДК	Xm		0,00
		2908	Пыль неорганическая, содержащая менея	0.0049500	0.0000000	2	0,073	25,7	0.5	0,156			
		_	70% SiO2	0.0040000	0,000000	2	0,075	25,7	0,5	0,156	16,7	0,5	
+	0	2 1	29 Вытяжка участка мойки 1	1 8,0	0,50 1,389	7,07412	20	1,0	645,0	155,0	645,0	155,0	0,00
1			автомобилей	1 "1	-,	7,07	~~	''"	040,0	100,0	040,0	133,0	0,00
		Код в-ва	Наименование вещества	Выброс, (г/с)	Выброс, (т/г)	F Лето:	Ст/ПДК	Xm	Um Зима:	Ст/ПДК	Xm	Um	
		0301	Азота диоксид (Азот (IV) оксид)	0.0000700	0,0000000	1 5.010.	0.000	52,4	0,6	0,000	71,9	1,1	
		0304	Азот (II) оксид (Азота оксид)	0.0000110	0,0000000	1	0.000	52,4 52,4	0,6	0.000	71,9	1,1	
		0328	Углерод (Сажа)	0.0000040	0,0000000	1,5	0,000	45,9	0,6	0,000	71,9 62,9	1,1	
		0330	Сера диоксид (Ангидрид сернистый)	0.0000130	0,0000000	1	0,000	52,4	0,6	0.000	71,9	1,1	
		0337	Углерод оксид	0.0025530	0,0000000	i	0,000	52,4 52,4	0,6	0,000	71,9 71,9	1,1	
		2754	Углеводороды предельные алифатическо		0.0000000	ì	0.000	52,4	0.6	0,000	71,9 71,9	1,1	
			го ряда С11-С19		,	•	-,	-	-1-	0,000	,0	.,,	

Выбросы источников по веществам

Вещество: 0301 Азота диоксид (Азот (IV) оксид)

Nº	Nº	N₽	Тип	Учет	Выброс	F		Лето			Зима			
пл.	цех	ист.			(r/c)									
							Ст/ПДК	Χm	Um (м/c)	Ст/ПДК	Xm	Um (м/с)		
0	1	4	1	_	41.6600000	1	0,0988	1656,70	4,3844	0,0944	1695,84	4,6520		
0	1	5	1	-	206.5800000	1	0,0906	3494,24	6,0080	0,0870	3565,84	6,3263		
0	1	36	1	%	0.0032000	1	0,0234	37,05	0,5000	0,0415	28,68	0,6921		
. O	1	37	1	%	0.0032000	1	0,1420	17,10	0,5000	0,1600	17,15	0,7875		
0	1	123	1	-	44.7050000	1	0,1347	1603,38	8,1379	0,1297	1631,56	8,7327		
0	2	3	1	+	49.6000000	1	0,0916	1875,00	5,2872	0,0875	1919,06	5,6298		
0	2	4	1	+	14.3790000	1	0,0455	1438,37	3,6668	0,0438	1466,88	3,8354		
0	2	5	1	+	82.2000000	1	0,0483	3023,71	4,7438	0,0459	3100,88	5,0408		
0	2	123	1	+	52.3490000	1	0,1282	1784,23	9,6133	0,1243	1807,49	10,2041		
0	2	124	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179		
0	2	125	1	+	0.0004500	1	0,0015	57,82	0,6502	0,0010	75,59	1,1179		
0	2	126	1	+	0.0004500	1	0,0006	99,86	1,1230	0,0006	100,40	1,1498		
0	2	127	1	+	0.0002080	1	0,0010	44,46	0,5000	0,0014	37,66	0,5898		
0	2	129	1	+	0.0000700	1	0,0003	52,42	0,5748	0,0002	71,89	1,0729		
Итог	o:				198.5360280		0,4838			0,5071				

Вещество: 0330 Сера диоксид (Ангидрид сернистый)

Nº nn.	№ цех	№ ист.	Тип	Учет	Выброс (г/с)	F		Лето			Зима	
	j .				(,		Cm/ПДК	Xm	Um (м/c)	Cm/ПДК	Xm	Um (м/с)
0	1	4	1	-	142.2500000	. 1	0,1688	1656,70	4,3844	0,1612	1695,84	4,6520
0	1	5	1	-	1044.3570000	1	0,2289	3494,24	6,0080	0,2199	3565,84	6,3263
0	2	3	1	+	223.9110000	1	0,2068	1875,00	5,2872	0,1976	1919,06	5,6298
0	2	4	1	+	0.2880000	1	0,0005	1438,37	3,6668	0,0004	1466,88	3,8354
0	2	5	1	+	1.6450000	1	0,0005	3023,71	4,7438	0,0005	3100,88	5,0408
0	2	124	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	125	1	+	0.0000830	1	0,0001	57,82	0,6502	0,0001	75,59	1,1179
0	2	126	1	+	0.0000830	1	0,0001	99,86	1,1230	0,0001	100,40	1,1498
0	2	127	1	+	0.0000390	1	0,0001	44,46	0,5000	0,0001	37,66	0,5898
0	2	129	1	+	0.0000130	1	0,0000	52,42	0,5748	0,0000	71,89	1,0729
Итог	0:				225.8443010		0,2082	-		0,1989		

Вещество: 0337 Углерод оксид

Nº	Nº	Nº	Тил	Учет	Выброс	F		Лето			Зима	
пπ.	цех	ист.			(г/c)							
	ļ						Ст/ПДК	Xm	Um (м/с)	Ст/ПДК	Xm	Um (м/с)
0	1	4	1	-	11.0700000	1	0,0013	1656,70	4,3844	0,0013	1695,84	4,6520
0	1	5	1	-	53.3700000	_ 1	0,0012	3494,24	6,0080	0,0011	3565,84	6,3263
0	1	36	1	%	0.0036920	. 1	0,0013	37,05	0,5000	0,0024	28,68	0,6921
0	1	37	1	%	0.0036920	1	0,0082	17,10	0,5000	0,0092	17,15	0,7875
0	_ 1	123	1	-	134.1150000	1	0,0202	1603,38	8,1379	0,0194	1631,56	8,7327
0	2	3	1	+	38.1840000	1	0,0035	1875,00	5,2872	0,0034	1919,06	5,6298
0	2	4	1	+	2.6360000	1	0,0004	1438,37	3,6668	0,0004	1466,88	3,8354
0	2	5	1	+	15.0700000	1	0,0004	3023,71	4,7438	0,0004	3100,88	5,0408
0	2	123	1	+	157.0470000	1	0,0192	1784,23	9,6133	0,0186	1807,49	10,2041
0	2	124	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	125	1	+	0.0132820	1	0,0022	57,82	0,6502	0,0014	75,59	1,1179
0	2	126	1	+	0.0132820	1	0,0009	99,86	1,1230	0,0009	100,40	1,1498
0	2	127	_ 1	+	0.0076320	1	0,0018	44,46	0,5000	0,0025	37,66	0,5898
0	2	129	1	+	0.0025530	1	0,0005	52,42	0,5748	0,0003	71,89	1,0729
Итог	0:				212.9944150		0,0408			0,0410		

Расчет проводился по веществам (группам суммации)

Код	Наименование вещества	Пре	дельно Допу Концентрац	*Поправ. коэф. к ПДК/ОБУ В	Фоновая концентр.		
		Тиπ	Спр. значение	Исп. в расч.		Учет	Интерп.
0301	Азота диоксид (Азот (IV) оксид)	ПДК м/р	0.2500000	0.2500000	1	Да	Да
	Сера диоксид (Ангидрид сер- нистый)	ПДК м/р	0.5000000	0.5000000	1	Да	Да
0337	Углерод оксид	ПДК м/р	5.0000000	5.0000000	1	Да	Да

^{*}Используется при необходимости применения особых нормативных требований. При изменении значения параметра "Поправочный коэффициент к ПДК/ОБУВ", по умолчанию равного 1, получаемые результаты расчета максимальной концентрации следует сравнивать не со значением коэффициента, а с 1.

Посты измерения фоновых концентраций

№ поста	Наименование	Координаты поста		
		x	у	
	ул.Кедышко, 45	-480	5800	

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1,6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.013	0.013	0.013	0.013	0.013		
0337	Углерод оксид	0.257	0.257	0.257	0.257	0.257		
0703	Бенз/а/пирен (3,4-Бензпирен)	7.7E-7	7.7E-7.	7.7E-7	7.7E-7	7.7E-7		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7		
2 ул.	Тростенецкая, 4				-4185			

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6			
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
3 ул.	Каховская, 72		-		-5200	510			

Код в-ва	Наименование вещества		Фоно	вые концент	рации	-
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
4 ул.	Жилуновича, 3		_		-730	-63

Код в-ва	Наименование вещества		Фоно	вые концент	рации	
		Штиль	Север	Восток	Юг	Запад
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8,2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
5 ул.	Скорины, 18				2044	453

Код в-ва	Наименование вещества	Фоновые концентрации				
		Штиль	Север	Восток	Юг	Запад

0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028
0337	Углерод оксид	0.754	0.754	0.754	0.754	0.754
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7
6ул	. Селицкого, 33				4562	-5345

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6			
0184	Свинец и его соединения	7.9E-5	7.9E-5	7.9E-5	7.9E-5	7.9É-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.053	0.053	0.053	0.053			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.659	0.659	0.659	0.659	0.659			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1E-7	1E-7			
7ул.	Тростенецкая, 10Б				-3840	-176			

Код в-ва	Наименование вещества	Фоновые концентрации							
		Штиль	Север	Восток	Юг	Запад			
0124	Кадмий и его соединения	2.1E-6	2.1E-6	2.1E-6	2.1E-6	2.1E-6			
0184	Свинец и его соединения	8.9E-5	8.9E-5	8.9E-5	8.9E-5	8.9E-5			
0301	Азота диоксид (Азот (IV) оксид)	0.073	0.073	0.073	0.073	0.073			
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7			
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028			
0337	Углерод оксид	0.871	0.871	0.871	0.871	0.871			
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6			
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1E-7	1.162-0 1E-7	1.70L-0			
8 пр.	Партизанский, 66 А			 -	-345	-10			

Код в-ва	Наименование вещества	Фоновые концентрации						
		Штиль	Север	Восток	Юг	Запад		
0124	Кадмий и его соединения	1.6E-6	1.6E-6	1.6E-6	1.6E-6	1.6E-6		
0184	Свинец и его соединения	8.2E-5	8.2E-5	8.2E-5	8.2E-5	8.2E-5		
0301	Азота диоксид (Азот (IV) оксид)	0.081	0.048	0.048	0.062	0.081		
0325	Мышьяк и его соединения	1E-7	1E-7	1E-7	1E-7	1E-7		
0330	Сера диоксид (Ангидрид сернистый)	0.028	0.028	0.028	0.028	0.028		
0337	Углерод оксид	1.315	1.315	1.315	1.315	1.315		
0703	Бенз/а/пирен (3,4-Бензпирен)	1.75E-6	1.75E-6	1.75E-6	1.75E-6	1.75E-6		
2904	Мазутная зола теплоэлектростанций	1E-7	1E-7	1.75L-0 1E-7	1.732-0 1E-7	1.75E-0		

Перебор метеопараметров при расчете Уточненный перебор

Перебор скоростей ветра осуществляется автоматически Направление ветра

Начало сектора	Конец сектора	Шаг перебора ветра
0	360	1

Расчетные области Расчетные точки

Nº	№ Координаты точки (м)		Высота (м)	Тип точки	Комментарий,
	X	Y	<u></u>		
21	6835,00	290,00	2	точка пользователя	
22	8785,00	4040,00		точка пользователя	

Результаты расчета по веществам (расчетные точки)

Вещество: 0301 Азота диоксид (Азот (IV) оксил)

	— — — — — — — — — — — — — — — — — — —										
N₂	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (мг/куб.м)	Напр. ветра	Скор. ветра	Фон (мг/куб.м)	Фон до искл.	Тип		
21	6835	290	2	0.0899	265	5,00			0		
22	8785	4040	2	0.0838		5,00			0		

Вещество: 0330 Сера диоксид (Ангидрид сернистый)										
Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (мг/куб.м)	Напр. ветра	Скор. ветра	Фон (мг/куб.м)	Фон до искл,	Тип точки	
21	6835	290	2	0.0497	266	5,00	0.00526	0.02629	0	
22	8785	4040	2	0.0319	243	5,00	0.00518	0.02591	0	

Вещество: 0337					Углерод	оксид			
Nº	Коорд Х(м)	Коорд Ү(м)	Высота (м)	Концентр. (мг/куб.м)	Напр. ветра	Скор. ветра	Фон (мг/куб.м)	Фон до искл.	Тип точки
21	6835	290	2	0.8868	265	5,00	0.84605	0.86045	0
22	8785	4040	2	0.8527	242	3,70	0.82614	0.83564	0

В соответствии с «Методикой расчета приземных концентраций загрязняющих веществ разных периодов осреднения применительно к крупным точечным источникам. 0212.22-99», утвержденной приказом Минприроды РБ от 30 декабря 1999г. № 390, для пересчета разнопериодных (в пределах суток) концентраций применимо эмпирическое выражение

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{\tau_2}{\tau_1}\right)^{0,2}$$

Для среднечасовых:

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{60}{20}\right)^{0.2} = 1,246; \quad C_2(\tau_2) = \frac{C_1(\tau_1)}{1,246},$$

где $C_1(\tau_1)$ и $C_2(\tau_2)$ - концентрации периодов осреднения τ_1 = 20 мин. и τ_2 = 60 мин: $C_1(\tau_1)$ - максимально-разовая и $C_2(\tau_2)$ - среднечасовая.

Таким образом, среднечасовая концентрация диоксида азота по варианту 3 составит:

- C_{ср.}= 0,0899/1,246 = 0,072 мг/м³ или 72 мкг/м³ (расчетная точка № 21);
- C_{ср.}= 0,0838/1,246 = 0,067 мг/м³ или 67 мкг/м³ (расчетная точка № 22).

Среднечасовая концентрация серы диоксида составит:

- C_{ср.}= 0,0497/1,246 = 0,040 мг/м³ или 40 мкг/м³ (расчетная точка № 21);
- C_{ср.}= 0,0319/1,246 = 0,026 мг/м³ или 26 мкг/м³ (расчетная точка № 22).

Для средних за 8 часов:

$$\frac{C_1(\tau_1)}{C_2(\tau_2)} = \left(\frac{480}{20}\right)^{0,2} = 1,888; \quad C_2(\tau_2) = \frac{C_1(\tau_1)}{1,888},$$

где $C_1(\tau_1)$ и $C_2(\tau_2)$ - концентрации периодов осреднения τ_1 = 20 мин. и τ_2 = 480 мин: $C_1(\tau_1)$ - максимально-разовая и $C_2(\tau_2)$ - средняя за 8 часов.

Таким образом, средняя за 8 часов концентрация углерод оксида составит:

- С_{ср.}= 0,8868/1,888 = 0,470 мг/м³ или 470 мкг/м³ (расчетная точка № 21);
- С_{ср.}= 0,8527/1,888 = 0,452 мг/м³ или 452 мкг/м³ (расчетная точка № 21).

Следовательно, полученные расчетные значения концентраций показали, что загрязнение атмосферного воздуха в анализируемых точках не превышает нормативов ЭБК, приведенных в таблице Е.43 приложения Е к ЭкоНиП 1717.01.06-001-2017.